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ABSTRACT

Vision-language models (VLMs) embed aligned image-text pairs into a joint space
but often rely on deterministic embeddings, assuming a one-to-one correspon-
dence between images and texts. This oversimplifies real-world relationships,
which are inherently many-to-many, with multiple captions describing a single im-
age and vice versa. We introduce Probabilistic Language-Image Pre-training (Pro-
LIP), the first probabilistic VLM pre-trained on a billion-scale image-text dataset
using only probabilistic objectives, achieving a strong zero-shot capability (e.g.,
74.6% ImageNet zero-shot accuracy with ViT-B/16). ProLIP efficiently estimates
uncertainty by an “uncertainty token” without extra parameters. We also introduce
a novel inclusion loss that enforces distributional inclusion relationships between
image-text pairs and between original and masked inputs. Experiments demon-
strate that, by leveraging uncertainty estimates, ProLIP benefits downstream tasks
and aligns with intuitive notions of uncertainty, e.g., shorter texts being more un-
certain and more general inputs including specific ones. Utilizing text uncertain-
ties, we further improve ImageNet accuracy from 74.6% to 75.8% (under a few-
shot setting), supporting the practical advantages of our probabilistic approach.
The code is available at https://github.com/naver-ai/prolip.

1 INTRODUCTION

Vision-language models (VLMs) aim for a joint vision-language embedding space, and have become
a cornerstone in the recent advance of machine learning (Radford et al., 2021; Jia et al., 2021;
Li et al., 2022; Zhai et al., 2023). For training, VLMs map an aligned image-text pair (e.g., an
image and its corresponding caption) into the same space using contrastive learning. Their rich
joint representations learned from large-scale image-text aligned datasets have achieved significant
success in various downstream tasks, such as zero-shot classification (by treating class labels as a
templated text, e.g., a photo of {·}) or image-text cross-modal retrieval.

Despite their great success, most VLMs encode representations into a deterministic Euclidean space.
This assumes a one-to-one correspondence between images and texts, which oversimplifies the com-
plex nature of real-world relationships. In practice, image-text matching is inherently many-to-many.
Multiple captions can accurately describe an image, each highlighting different aspects of the visual
content. For example, a train image can be described by multiple captions, e.g., “a train”, “train
station” or “train parked next to a station”. Conversely, a caption may correspond to several images
describing similar scenes or objects, e.g., “a train” can be matched to all the train images. However,
as shown in Figure 1 (b), a deterministic model (e.g., CLIP (Radford et al., 2021)) fails to capture the
multiplicity, e.g., “Train Station” embedding is located to an irrelevant point to the other train images
and captions. This is because the CLIP loss forces the positive pairs close and random negative pairs
far away, which has no stable solution when we map them onto a point in Euclidean space.

Instead of representing an input to a deterministic point vector, we aim to map an input to a ran-
dom variable. As shown in Figure 1 (a), our probabilistic VLM (PrVLM) approach can handle the
multiplicity, e.g., the distribution of “Train Station” covers all the train image distributions. This
paper introduces Probabilistic Language-Image Pre-training (ProLIP), the first PrVLM pre-trained
on billion-scale image-text pairs only using probabilistic objectives. Compared to previous PrVLM
works (Chun et al., 2021; Ji et al., 2023; Upadhyay et al., 2023; Chun, 2024), ProLIP has several
advantages. First, while the previous methods need a dedicated module to predict the uncertainty,
ProLIP estimates uncertainty very efficiently simply by adding an “uncertainty token” ([UNC]) to
input without other additional parameters. Second, we introduce a novel inclusion loss, which en-
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(a) ProLIP embedding space (b) Deterministic embedding space

Prob. image embeddings
Prob. text embeddings
Det. image embeddings
Det. text embeddings

Remove background

Figure 1: Comparison of ProLIP and deterministic embedding spaces. We visualize images and captions
from MS-COCO Caption (Chen et al., 2015) using models trained on DataComp 1B (Gadre et al., 2024)
with 1.28B seen samples (See Appendix A.2 for more details of visualization method). ProLIP can capture
multiplicity of image-text matching (e.g., the text embedding of “Train station” covers all three train images),
while deterministic embeddings fail to capture the ambiguity. Furthermore, when we synthetically remove the
background, ProLIP maps the new embedding near the original embedding but with a larger uncertainty value
(0.109 → 0.117, while the deterministic model maps the new embedding very far from the original embedding.

forces the distributional inclusion relationship between an image-text pair and between the original
input data and the masked one. Our new objective helps embeddings be more interpretable by hu-
mans. Third, ProLIP can be trained from scratch without needing any pre-trained models and achieve
state-of-the-art zero-shot capability without fine-tuning. Furthermore, ProLIP achieves strong zero-
shot capability, e.g., 74.6% ImageNet zero-shot accuracy with the ViT-B/16 backbone, where the
CLIP model with the same number of seen samples achieves 73.5% (Ilharco et al., 2021).

In the experiments, ProLIP slightly outperforms the deterministic CLIP model in zero-shot classi-
fication (ZSC) tasks (e.g., CLIP shows 67.2 ImageNet ZSC accuracy, while ProLIP shows 67.6).
We also show the benefits of using uncertainty estimates for image-text tasks. First, we observe that
our intuition and the learned uncertainty are aligned well. For example, (1) texts generally “include”
images (i.e., texts are more uncertain than images), (2) shorter texts tend to be more uncertain, (3)
more general texts/images tend to be more uncertain and include more specific ones (e.g., masked
image and “Train Station” in Figure 1). Furthermore, we show two applications when a proper un-
certainty estimate is helpful; Bayesian Prompt Re-Weighting (BPRW), a fully Bayesian approach to
seek better ImageNet zero-shot prompts which improves accuracy from 74.6%→ 75.8%), and the
uncertainty-based dataset traversal, which provides a better understanding of dataset hierarchy.

2 PRELIMINARY

2.1 INHERENT AMBIGUITY INDUCED BY THE MULTIPLICITY OF IMAGE-TEXT PAIRS

The nature of image-text matching is many-to-many. Unfortunately, in practice, this multiplicity is
not fully annotated in VL datasets; we only treat one corresponding caption as “positive“ caption,
while the others are considered as “negative”. For example, in COCO Caption (Chen et al., 2015),
more than 80% of positive correspondences are labeled as “negative” (Chun et al., 2022). As ob-
served by Chun (2024), this hidden multiplicity inherently causes ambiguity for VL datasets. For
example, assume we have the caption “a train is next to a train station” and three semantically simi-
lar images showing a train next to a train station. Here, there will be only one positive image for the
caption due to the construction protocol of VL datasets. If we approximate three image embeddings
as the same image embedding, the correspondence between this approximated embedding, and the
caption will be uncertain (i.e., either positive or negative). Suppose we use deterministic matching
loss, such as contrastive loss used by CLIP (Radford et al., 2021). In this case, the best deterministic
mapping will map the caption embedding not very close to the image embeddings but “properly”
far away from them. CLIP does not have enough capability to capture multiplicity and ambiguity.
We aim to achieve an embedding space that can represent the inherent uncertainty of the input (also
known as “aleatoric uncertainty”) for a more interpretable and understandable embedding space. We
include more detailed discussion in Appendix A.1.
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Figure 2: Overview of ProLIP. [CLS] and [UNC] tokens are used for µ and log σ2, respectively.

2.2 PROBABILISTIC IMAGE-TEXT REPRESENTATIONS

Probabilistic embeddings map each data point as a random variable (e.g., a Gaussian distribution)
rather than a fixed vector, capturing the inherent uncertainty and diversity. This approach offers a bet-
ter understanding of the semantic space by providing an extra axis of uncertainty, e.g., we can quan-
tify the uncertainty of the input by using the estimated uncertainty (e.g., covariance of Gaussian).
Recently, Kirchhof et al. (2023) theoretically have shown that a probabilistic representation learning
with a proper probabilistic matching loss can recover the correct aleatoric uncertainty. Namely, a
probabilistic mapping can capture the ambiguity of the inputs. Probabilistic embeddings have been
actively studied for applications with inherent ambiguity, such as word embeddings (Nguyen et al.,
2017), image embeddings (Oh et al., 2019), face understanding (Shi & Jain, 2019; Chang et al.,
2020), 2D-to-3D pose estimation (Sun et al., 2020), speaker diarization (Silnova et al., 2020), video
understanding (Park et al., 2022), and composed image retrieval (Neculai et al., 2022).

As we discussed in Section 2.1 and A.1, VL tasks also suffer from aleatoric uncertainty caused by
the inherent multiplicity of image-text matching and sparse annotations. Recently, there have been
attempts to tackle the inherent ambiguity of VL tasks with probabilistic embeddings (Chun et al.,
2021; Ji et al., 2023; Upadhyay et al., 2023; Chun, 2024). However, these methods have a very lim-
ited scale to be used as a generic purpose VLM, such as CLIP. For example, ProbVLM (Upadhyay
et al., 2023) is an ad-hoc module top on the frozen pre-trained CLIP, limiting the full exploration
of the probabilistic space. Furthermore, ProbVLM is only trained on small image caption datasets,
such as CUB (Wah et al., 2011) or COCO caption (Chen et al., 2015), which makes it not applicable
to more practical zero-shot classification applications. MAP (Ji et al., 2023) proposes a pre-training
method using a cross-attention Transformer. However, it has a limited zero-shot capability, resulting
in the need to fine-tune the model for each downstream task. Furthermore, its structure is highly inef-
ficient for retrieval systems; it needs both image and text pair to compute a similarity between them,
i.e., we have to compute all possible image-text pairs to get the full similarity. Lastly, PCME++
(Chun, 2024) showed a possibility of pre-trained PrVLM, but their scalability is still limited (e.g.,
achieving 34% ImageNet zero-shot accuracy). We empirically observe that the objective function of
PCME++ shows slow or unstable training under large-scale image-text paris. Furthermore, all these
PrVLMs need heavy additional parameters to estimate uncertainty from data. ProLIP does not need
a dedicated module for uncertainty estimate but employs a very efficient strategy using [UNC].

3 PROBABILISTIC LANGUAGE-IMAGE PRE-TRAINING

3.1 ARCHITECTURE

We model an input as a Gaussian random variable with a diagonal covariance by estimating mean µ
and variance σ2 vectors from the input. Similar to CLIP (Radford et al., 2021), ProLIP has separate
visual and textual encoders. We use VisionTransformer (ViT) (Dosovitskiy et al., 2021) for the visual
encoder and Transformer (Vaswani et al., 2017) for the textual encoder.
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Previous Probabilistic VLMs (PrVLMs) introduce additional parameters for estimating uncertainty.
For example, PCME++ (Chun, 2024) uses one multi-head self-attention block for this. However,
this approach will require additional parameters and computational costs, limiting usability (See
Table C.6). Instead, we introduce a new uncertainty token [UNC], along with the class token [CLS]
(See Figure 2). Compared to the previous PrVLMs, [UNC] requires almost negligible additional
parameters. The visual encoder takes [CLS] and [UNC] at the beginning of the input sequences,
while the textual encoder takes [UNC] and [CLS] at the end of the input. This is because the textual
encoder of the original CLIP uses the end-of-sentence token rather than [CLS] at the beginning.
Note that we assume diagonal covariance for simplicity, namely, [UNC] is the same dimension
with [CLS]. We use the L2-normalized [CLS] output as µ and [UNC] output as log σ2. Similar
to [CLS], [UNC] is projected to the final embedding space using a linear layer. We initialize the
bias value of this layer to a small value (e.g., −10) to initialize the initial σ2 scale small (e.g.,
exp(−10) ≈ 5× 10−5 for each dimension). This simple trick helps stable training.

3.2 PROBABILISTIC PAIRWISE CONTRASTIVE LOSS

In this subsection, we introduce the probabilistic pairwise contrastive loss (PPCL), the main objec-
tive function of ProLIP. PPCL is similar to the probabilistic matching loss (PML) of PCME++, but
we modify PML for stable training based on the log sigmoid loss by SigLIP (Zhai et al., 2023).

Following PCME++, we use the closed-form sampled distance (CSD) as our probabilistic distance:
dCSD(Z1, Z2) = EZ1,Z2

∥Z1−Z2∥22 = ∥µ1−µ2∥22+tr(Σ1+Σ2) = ∥µ1−µ2∥22+∥σ1+σ2∥1, (1)
where Z1 and Z2 are Gaussian random variables with diagonal covariances. The probabilistic match-
ing loss by PCME++ uses pairwise binary cross entropy (BCE) by taking −a · dCSD(Z1, Z2) + b
as logits, where a and b are learnable scalars. However, we empirically observe that PML fastly
converges to a small value, and its gradient is dramatically small, which makes the overall learning
procedure slow or unstable (see Appendix A.3 for details). To solve the problem, we employ log
sigmoid loss (Zhai et al., 2023). By replacing the squared L2 distance ∥µ1 − µ2∥22 to Equation (1)
(details are in Appendix A.4), we have a new probabilistic pairwise contrastive loss (PPCL):

LPPCL(Zv, Zt) = − log
1

1 + exp(yvt(−a(µ⊤
v µt − 1

2 tr(Σv +Σt)) + b))
, (2)

where a and b are learnable scalar values and yvt is 1 if v and t are matched otherwise -1.

3.3 INCLUSION LOSS

Although PPCL enables to learn probabilistic representations, we empirically observe that the
learned uncertainty from data is often counterintuitive to humans. For example, we may expect
that text captions with a general meaning (e.g., “photo”) has a very large covariance that can cover
all the photographic image embeddings, but sometimes it does not. Similarly, we may expect that if
a text or an image loses some information (e.g., some tokens are randomly masked), its probability
distribution will entail the distribution of the original sample. However, it is not always guaranteed
that a model will learn desired uncertainty, especially under noisy image-text correspondences.

To tackle the issue, we introduce a novel objective function enforcing a random variable Z1 to be
included in another random variable Z2. Let p1 and p2 be their corresponding probability density
function (pdf). If Z1 is included in Z2, then we can presume that the area with high p1 will be
overlapped to the area with high p2. From this observation, we propose a novel inclusion measure
by emphasizing the area with high p1 and compute expectation of the emphasized p1 under the
distribution p2. Specifically, we take the square to p1, and compute

∫
p1(x)

2p2(x)dx. This measure
is related to Bhattacharyya distance (

∫ √
p1p2dx) or the inner product (

∫
p1p2dx), but our measure

is designed for measuring “inclusion” (it becomes high if Z1 is included in Z2 and otherwise low)
while the others are designed for measuring “distance” or “dissimilarity” between distributions.

The log inclusion measure (omitting constants) can be derived as follows:

inc(Z1, Z2) = log

∫ ∞

−∞
p21(x)p2(x)dx = −2 log σ2

1 − log σ2
2 −

1

2
log(A) +

B2

4A
− C,

where A =
1

σ2
1

+
1

2σ2
2

, B =
2µ1

σ2
1

+
µ2

σ2
2

, C =
µ2
1

σ2
1

+
µ2
2

2σ2
2

.

(3)
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Figure 3: Visual understanding of the proposed inclusion loss. We plot probabilistic density functions
(pdfs) of three pairs of Gaussian distributions and their inclusion hypothesis, H(Z1 ⊂ Z2) (Equation (4)), log
inclusion (Equation (3)) and KL divergence. The dashed line denotes the squared pdf, i.e., p2(x). H(Z1 ⊂ Z2)
becomes (a) positive if Z1 is included in Z2 and (b) otherwise negative. (c) If Z1 and Z2 are the same level, then
H will become zero. While log inclusion represents how Z1 is included in Z2, KL measures the “dissimilarity”
between distributions (e.g., (c) has the largest KL, but the smallest “inc”). Figure A.2 shows more examples.

The full derivation is in Appendix A.5.

Now, using Equation (3), we introduce a hypothesis test whether Z1 is included in Z2 as follows:

H(Z1 ⊂ Z2) = log

∫ ∞

−∞
p21(x)p2(x)dx− log

∫ ∞

−∞
p1(x)p

2
2(x)dx. (4)

H is positive if the hypothesis is true and otherwise negative (See Figure 3). It has two distinct
properties compared to other probabilistic measures. First,H is asymmetric. The most probabilistic
measures aim to measure the “distance”, “overlapping” or “dissimilarity” between two distributions,
therefore symmetric (e.g., Wasserstein distance and Bhattacharyya distance). Meanwhile, we mea-
sure the level of “inclusion” of two random variables, therefore asymmetric: if Z1 is included in
Z2, then Z2 will not be included in Z1, i.e., H(Z1, Z2) ̸= H(Z2, Z1). Compared to the asymmetric
measure, such as KL divergence, we aim to measure how Z1 is “included” in Z2. In contrast, KL
measures the dissimilarity between them based on relative entropy. As shown in Figure 3, even if Z1

and Z2 have the same variance, we have very high KL, while our measure becomes very small.

Similarly to PPCL, we use the log sigmoid loss for stable convergence. We use
log
∫∞
−∞ p21(x)p2(x)dx−log

∫∞
−∞ p1(x)p

2
2(x)dx as the logit value, where the logit becomes positive

if Z1 is included in Z2. Now, we introduce our novel inclusion loss as follows:

Linclusion(Z1 ⊂ Z2) = − log
1

1 + exp (−cH(Z1 ⊂ Z2))
, (5)

where c is a positive scalar. For stability, we fix c as a large value, such as 1000. Like KL divergence,
inclusion loss can be volatile if variance values become extremely small. To prevent a loss explosion,
during training, we multiply a small ε to 1

σ2 for computing A,B,C in Equation (3), mimicking each
Gaussian has sufficiently large variances multiplied by 1/ε. See Table C.5 for more details.

Using the inclusion loss, we enforce two properties to the model. First, we let text distribution
include image distribution, i.e., Linclusion(Zv ⊂ Zt). This intuition is from observations from the
previous studies showing that “text entails image” (Chun et al., 2021; Desai et al., 2023; Chun,
2024; Kim et al., 2024). Conceptually, when we describe an image, we select the product of the
relevant concepts by an arbitrary choice. Therefore, text usually has more general information than
images. As another property, we let an embedding of partial information include the embedding of
its full information, i.e., Linclusion(Z ⊂ Zpartial). For example, we generate a text containing partial
information of the original caption by masking out random tokens (Devlin et al., 2018). Similarly,
we generate a partial image by masking out the image tokens (He et al., 2022). In practice, we mask
out 75% of the input tokens to generate partial information. For text, we replace the input tokens
with [MASK], and for image, we drop the input patch tokens for efficient computation (Li et al.,
2023).

Finally, we use the VIB loss as a regularization of each Gaussian embedding (i.e., preventing too
small σ2) following Chun et al. (2021) and Chun (2024) – See Appendix A.7 for the details. Putting
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Equation (2) and Equation (5) all together, we have the following learning objective:

L =
∑
Zv∈V

∑
Zt∈T

LPPCL(Zv, Zt) +
∑
Zv∈V

[α2Linclusion(Zv ⊂ Zvmasked) + βLVIB(Zv)]

+
∑
Zt∈T

[α2Linclusion(Zt ⊂ Ztmasked) + βLVIB(Zt)] +
∑

(v,t)∈(V,T )

α1Linclusion(Zv ⊂ Zt),
(6)

where α1, α2, β are control hyperparameters for each loss function. For computational efficiency,
we generate masked samples only for 12.5% samples in the mini-batch and compute inclusion loss
using them. VIB loss is computed for all samples. We report the loss ablation study in Appendix C.3.

3.4 PROMPT TUNING WITH UNCERTAINTY ESTIMATES

As observed by Chun (2024), the estimated uncertainty is not only beneficial to understanding the in-
put data uncertainty but also effective to zero-shot classification (ZSC). In practice, we use multiple
templated text prompts to estimate the textual embedding of class names. For example, the original
CLIP paper uses 80 prompts, including “a photo of {·}”. Although this prompt engineering
with a mixture of templates significantly improves ZSC performances, it is still unclear which tem-
plate benefits ZSC. Furthermore, if we carefully explore images of each class, we can conjecture that
each class might need different templates. For example, in ImageNet, “ferret” images often co-occur
with the ferret’s owner. In this case, prompts like “a photo of my ferret” can be helpful to
estimate a text feature corresponding to the images, compared to using “a origami ferret”.

How can we select the most informative text prompts? One possible solution will be filtering out
highly uncertain text prompts. For example, for “black-footed ferret” class, “the embroidered {·}”,
“the origami {·}” or “the plastic {·}” have high uncertainty values, while “a low resolution photo of
{·}” or “a cropped photo of {·}” have small uncertainty values. Our experiment shows this strategy
is moderately effective: it improves ImageNet ZSC accuracy +0.1pp. We presume that it is because
the variety of text prompt uncertainties for each class is not significantly large. Also, we presume that
the suitability of text prompts is not solely dependent on the text itself; we may need to consider how
texts describe the corresponding images well. We propose Bayesian Prompt Re-Weighting (BPRW),
a simple probabilistic approach to find the optimal weight of prompts for each class.

Let πc ∈ RN be the weight of each prompt, where N is the number of prompts (i.e., 80 for
ImageNet) and c is the class index. Our goal is to find the best πi that the new text embedding
Znew
t =

∑
i π

i
cZ

i
t describe the given M image embeddings Zj

v . To achieve this goal, we optimize
πc to have the best posterior for Zt and Zv . First, we sample K point vectors for each Zj

v and
assume they are observations (total K ×M point vectors). Next, we optimize a simple Expectation-
Maximization (EM) algorithm to find the best π achieving the best log-likelihood. Here, we set a
Dirichlet prior for πc using the uncertainty values of each Zt, i.e., a prompt with higher uncertainty
has a smaller prior. Due to the page limit, we describe the detailed algorithm in Appendix A.8.

Although our algorithm is theoretically well-founded and flexible by a Bayesian approach (e.g., set-
ting prior assumption using σ2

t ), it needs the image embeddings corresponding to the target class,
which violates the ZSC assumption. We tackle this issue by collecting corresponding image embed-
dings using KNN for each text class embedding. If we can use some true pairs under a few-shot
setting (e.g., 5 true images for each class), we observe a significant performance improvement.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS AND EXPERIMENTAL PROTOCOL

Model. We use ViT-B/16 (Dosovitskiy et al., 2021) as our image encoder and a 12-layer 768-wide
Transformer (Vaswani et al., 2017) as our text encoder. We set the embedding dimension to 768 and
the context length to 64 tokens, following SigLIP ViT-B/16 (Zhai et al., 2023).

Optimization. We implement ProLIP based on openclip (Ilharco et al., 2021) and the DataComp-
1B dataset (Gadre et al., 2024). We list the optimization hyperparameters in Appendix B.1. We train
ProLIP models using 32 NVIDIA H100 GPUs with Bfloat16 precision, taking about one day to train
a ViT-B/16 model with 1.28B seen samples. We initialize the bias value of the linear projection top
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on [UNC] to −10 to initialize log σ2 with a small value. We set the initial scale and bias parameters
(a and b in Equation (2)) to 10 and −10, following Zhai et al. (2023). We randomly select 12.5%
image-text pairs from the mini-batch and masking out their 75% information using [MASK] for
texts (Devlin et al., 2018) and token drop for images (He et al., 2022). Fine-tuning details are in
Appendix B.2.

Evaluation. We evaluate the models on 38 tasks of Datacomp evaluation suite (Gadre et al., 2024)
– the full evaluation datasets are listed in Appendix B.3. We report five categories: ImageNet, 6
ImageNet variants with distribution shifts, 13 VTAB tasks, 3 retrieval tasks, and the average of 38
tasks. In addition, we employ the HierarCaps dataset (Alper & Averbuch-Elor, 2024) which provides
captions with four different hierarchies (e.g., “water sports”⇒ “kite surfing”⇒ “kite surfer on top of
the board”⇒ “kite surfer in the air on top of a red board”). Similarly, we construct new HierarImgs
dataset, which provides images with four different hierarchies (See Figure B.2 for examples). We
will describe the details of HierarCaps, HierarImgs, and their evaluation in Section 4.4.

4.2 MAIN RESULTS

Table 1 shows the main result. We use multiple prompts for each task following the DataComp eval-
uation suite. Similar to CLIP zero-shot classification (ZSC), ProLIP uses the ensemble of multiple
prompts by Zmixed

t = N ( 1
N

∑
i µi,

1
N

∑
i σ

2
i ), where µi and σ2

i denote the mean and variance of i-th
prompt and N is the number of prompts (e.g., 80 for ImageNet). Note that if we treat this operation
as the “average” of N random variables, then the variance should be 1

N2

∑
i σ

2
i , but we empiri-

cally observe that the division decreases the final ZSC performance, e.g., 74.51 where our approach
shows 74.58 on ImageNet. We did not use the uncertainty-based ZSC described in Section 3.4 for
evaluating 38 tasks. Instead, we use CSD to find the nearest class text embedding.

Table 1 shows that ProLIP outperforms CLIP in all metrics with 1.28B seen samples. Furthermore,
when we train ProLIP with 12.8B seen samples, we achieve a high-performing PrVLM. We show
more ablation studies in Appendix C.3, including loss design, hyperparameter, and architecture.

Table 1: Zero-shot classification results. The full results for each task are in Table C.1. ViT-L/16 and
SO400M/14 results are the fine-tuned results from the pre-trained SigLIP models. More results in Table C.2.

# Samples Seen ImageNet IN dist. shifts VTAB Retrieval Average

ViT-B/16

CLIP 1.28B 67.2 55.1 56.9 53.4 57.1
SigLIP 1.28B 67.4 55.4 55.7 53.4 56.7
ProLIP 1.28B 67.8 55.3 58.5 53.0 57.9

ProLIP 12.8B 74.6 63.0 63.7 59.6 63.3

ViT-L/16 ProLIP 1.28B* 79.4 68.6 64.0 61.3 65.9

ViT-SO400M/14 ProLIP 1.28B* 79.3 69.0 65.1 62.5 66.6

4.3 UNDERSTANDING THE LEARNED UNCERTAINTY

Uncertain samples visualization. From Equation (1), we can define the uncertainty of the given
input by measuring tr(Σ), namely,

∑
i σ

2
i (we simply denote σ2

v for image uncertainty and σ2
t simi-

larly). Figure 4 shows the samples with low and high uncertainty values using this value. We extract
samples from the 3.5M subset of 12.8B DataComp CommonCrawl small (Gadre et al., 2024) filtered
by CLIP similarity and English filtering 1. We use ProLIP with 12.8B seen samples for the analyses.

Figure 4 shows that the texts with more general meanings have high uncertainty, e.g.“Screenshot”
or “graphic”. This is because a shorter text with more general meaning has more opportunity to
be matched to various images. In contrast, certain captions describe a longer and distinct context,
such as the exact address or proper nouns, which is unlikely matched to multiple images. We will
show that the context length of the text is highly correlated to the uncertainty value (Figure 6).
Interestingly, there are captions with high uncertainty despite long context lengths (e.g., more than
the specified context length). We empirically observe that such captions have almost no information,
showing that ProLIP captures the text uncertainty well. The examples are shown in Appendix C.1.

1https://huggingface.co/datasets/nielsr/datacomp-small-filtered
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Figure 4: Uncertain & certain samples. Visualization from the 3.5M filtered DataComp Small pool.
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More general captions (i.e., lower
level) are more uncertain.

We can see certain and uncertain images in the upper row of Figure 4. On the uncertain image side,
we can find images solely with an object (e.g., a clock, a book, or a clipart) on a white background.
Generally, such images can be matched to multiple possible descriptions, e.g., the name of the prod-
uct, the detailed explanation of the product, or the written text in the image (e.g., the book title). On
the other hand, certain images have more complex visual cues that can be described with more and
specific captions. More samples with high and low uncertainty can be found in Figure C.1.

Statistics of σ2
v and σ2

t . In Figure 4, we also observe that σ2
v is generally smaller than σ2

t , would be
originated from the inclusion loss Linclusion(Zv, Zt) in Equation (6). Figure 5 shows that the image
embeddings and text embeddings have distinct uncertainty values. In Appendix C.6, we provide a
detailed discussion of the relationship between learned uncertainty and human preference.

What is the source of the uncertainty? We answer this question by analyzing text context length
and data hierarchy. First, we plot the text uncertainty by the context length on the ConceptualCaption
3M (CC3M) captions (Sharma et al., 2018). As shown in Figure 6, a short caption tends to have
a large uncertainty value. For example, we observe that the caption “film series” has the largest
uncertainty value in CC3M, while the caption “gangsta rap artist told by person @ person I almost
died you have to see this!” is the most certain caption. Namely, more uncertain captions tend to be
more logically “general” captions, such as “dress - sewing pattern” or “person – before & after”,
while more certain captions specify a particular situation. From this observation, we explore the
relationship between the uncertainty and varying levels of description. We employ the HierarCaps
dataset, whose images have four levels of descriptions from the full caption of COCO Caption and its
logical entailment hierarchy with three different levels (e.g., “bird”⇒ “blue bird” . . . ). Examples are
shown in Figure 9. Figure 7 shows the relationship between the text uncertainty and text hierarchy
levels. Here, Level 0 denotes the most general captions, e.g., “chair” or “bird”, and Level 4 represents
the original COCO Caption. As shown in the figure, more general captions (lower levels) tend to be
more uncertain, while more specific captions (higher levels) tend to be less uncertain.
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Figure 8: σ2
v by image hierarchy using HierarImgs. We tested the inclusion hypothesis of the original image

and masked images from level i, H(orig ⊂ i), and its inverse hypothesis, H(i ⊂ orig). In all tests, more than
70% images are included in their lower-level images (purple histogram bars with positive hypothesis values).
The dataset construction of HierarImgs and related discussions can be found in Appendix B.5 and C.5.

We further investigate whether a similar phenomenon happens for the visual modality by construct-
ing a new HierarImgs dataset to represent the logical visual hierarchy. As shown in the upper row of
Figure 8, our HierarImgs dataset consists of four levels: Level 4 is the original image and Level 0 is
the largest visual segment. The details of the dataset construction can be found in Appendix B.5.

Using the images, we analyze the relationship between the visual uncertainty and varying levels of
visual information. We test whether each image becomes more uncertain than the original image by
applying the inclusion hypothesis. Namely, we test if a lower-level image includes its original image
by Equation (4). As shown in Figure 8, most of the images satisfy the inclusion hypothesis (e.g.,
more than 70%), implying that ProLIP also captures image hierarchy. In Appendix C.5, we explain
more details of the image hierarchy experiments, including the absolute σ2

v value by different levels
and possible pitfalls of HierarImgs (e.g., we need more careful filtering for a reliable evaluation).

4.4 APPLICATION USING UNCERTAINTY

Image traversals. Following Alper & Averbuch-Elor (2024), we first set the [ROOT] embedding.
Then, we retrieve the nearest caption of the given image, and interpolate [ROOT] and the text
embedding with 50 equally spaced steps. The null text embedding "" is used as the [ROOT] of the
CLIP embedding space. In ProLIP case, we can utilize the additional uncertainty information and
the inclusion hypothesis. Hence, we search the root embedding of the given embedding by searching
the text embedding that includes the given image embedding most. The other procedure equals to
Alper & Averbuch-Elor (2024). We perform traversals on HierarCaps. Details are in Appendix B.4.

We show image traversal results in Figure 9. Interestingly, the most inclusive caption (i.e., [ROOT])
for each image is not always same to the ground truth level 0 caption of HierarCaps. For example,
our estimated [ROOT] for the vase picture is “vase”, while the GT level 0 caption is “object”. From
the observation, we can presume that although our retrieval results are plausible, it could lead to
inferior HierarCaps retrieval results. To ensure more diversity, we take an average of "" and the
most inclusive text embedding and use it as the root embedding. Using the newly proposed root
embedding, we quantitatively measure the performance of our traversal in Table 2. First, our new
[ROOT] embedding is more specialized to the inputs, rather than only using ""; we can achieve
higher R@1[ROOT] using our approach. The table shows that the proposed probabilistic image traver-
sal achieves higher recall and precision than deterministic traversal using "" as [ROOT]. Namely,
the probabilistic approach gives more opportunities to get more precise captions during the traversal.

Uncertainty-based ImageNet prompt enhancement. As described in Section 3.4, we propose
BPRW, a new prompt re-weighting method to find a weight πc for each class. A text embedding
weighted by πc, i.e., Znew

t =
∑

i π
i
cZ

i
t will be used as a new class embedding for ZSC. Table 3 shows

the ImageNet classification results with different strategies. First, solely using text uncertainty and
filtering out uncertain texts are not sufficiently effective. They only improve about +0.05pp top-1 ac-
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Figure 9: Image traversals with ProLIP. For each image, we estimate the [ROOT] caption which include
the image most using Equation (4). Then, we interpolate the [ROOT] caption and the retrieved caption. We
compare our interpolation and HierarCaps GTs. Red denotes when the estimated and GT roots are different.

Table 2: HierarCaps retrieval. We measure the pre-
cision and recall of 50 traversal results. “Prob?” de-
notes inclusion-based traversal, using the average of
"" and “[ROOT]” in Figure 9 as a new [ROOT].
R@1[ROOT] is recall of [ROOT] embeddings.

Prob? Prec R@1 R@1[ROOT]

CLIP (1.28B) ✘ 25.0 63.0 0.1
ProLIP (1.28B) ✘ 28.4 62.6 0.1
ProLIP (1.28B) ✔ 35.9 62.9 15.3

ProLIP (12.8B) ✘ 31.7 67.8 0.1
ProLIP (12.8B) ✔ 41.1 68.0 23.3

Table 3: ImageNet prompt tuning by ProLIP. K
denotes the number of few-shot samples for each
class (if required). “OpenAI 80 prompts” is the same
as “ImageNet” of ProLIP 12.8B in Table 1.

Prompt strategy Accuracy K

“a photo of {·}” 73.7 -
OpenAI 80 prompts 74.6 -

Filtering by σ stats 74.6 (+0.03) -
Top-K prompts 74.7 (+0.07) -

BPRW (proposed) 74.7 (+0.12) 0
BPRW (proposed) 75.6 (+0.99) 5
BPRW (proposed) 75.8 (+1.21) 9

curacy. On the other hand, BPRW achieves better accuracy by using additional visual information;
we have +0.12pp for ImageNet ZSC. If we can use a few labeled images per class (e.g., five for each
class), we can get over 1.2% accuracy improvement by adjusting their weight. In Appendix C.7,
we describe more details of BPRW, including hyperparameters and more visualization results of the
learned weights by BPRW. Interestingly, the learned weights follow the actual image distributions;
if the images are mostly low resolution, “a low resolution” prompt becomes the most significant.

More examples and discussion. Due to the page limit, we include more example applications in
Appendix C.8. Also, we discuss the limitation of diagonal covariance assumption in Appendix D.

5 CONCLUSION

In this work, we introduced Probabilistic Language-Image Pre-training (ProLIP), a fully probabilis-
tic vision-language model that addresses the limitations of deterministic embeddings by capturing
the inherent multiplicity in image-text relationships. By mapping inputs to random variables and
efficiently estimating uncertainty through an “uncertainty token” ([UNC]), ProLIP models distribu-
tional relationships without additional parameters. The inclusion loss further enhances interpretabil-
ity by enforcing distributional inclusion between image-text pairs and between original and masked
inputs. Our experiments demonstrate that ProLIP is not only beneficial in zero-shot classification
tasks but also provides an additional axis of understanding input data by capturing their uncertainty.
Our approach highlights the potential of uncertainty modeling in vision-language applications.
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APPENDIX

A MORE DETAILS OF PROLIP

A.1 WHY DO WE NEED PROBABILISTIC REPRESENTATIONS?

Deterministic embeddings (e.g., CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023)) suffer from
the difficulty of representing input data uncertainty (i.e., aleatoric uncertainty). For example, “A per-
son is walking” can be matched to either “A person is walking in the rain” or “A person is walking
on sunshine”, but in a deterministic embedding space (Figure A.1a), it is challenging to represent
the ambiguity of “A person is walking”. On the other hand, a probabilistic embedding space (Fig-
ure A.1b) can represent this ambiguity by expanding the “area” of the ambiguous embedding. If
we assume more ambiguous input, such as “person”, a probabilistic embedding space can represent
the ambiguous input by assigning a larger uncertainty value to “person”. However, a deterministic
embedding space will map an input to a specific vector coordinate; one possible choice is to map
the uncertain input into the “average” of the possible matched inputs, e.g., let the “person” em-
bedding located to the midpoint of all the person-related text embeddings. However, this approach
still cannot capture the complex actual semantic meaning of “person”; it is more complex than the
average embedding. This argument is empirically supported by the image traversal experiment in
Section 4.4. Using a more proper text embedding as the root embedding [ROOT] performs better
than using a native null text embedding. Furthermore, this paper targets the vision-language repre-
sentation learning scenario, where the ambiguity of inputs is multi-modal; each modality (text and
image) can have inherent ambiguity as shown in Figure A.1 and the correspondence between image
and text can have ambiguity due to the inherent many-to-many correspondence and abundant false
negatives as shown by Chun (2024). Overall, we need to use probabilistic representations rather than
deterministic representations to represent the inherent ambiguity of vision-language datasets.

�A person is walking�

�Person�

�A person is walking in the rain�

�A person is walking on sunshine�

�A person hugging a cat�

(a) Deterministic embedding (b) Probabilistic embedding

Figure A.1: Conceptual comparison between deterministic and probabilistic embedding spaces. While
probabilistic representation space can naturally represent the inherent ambiguity of input data (i.e., aleatoric
uncertainty) by estimating the uncertainty of each input, a deterministic embedding space can suffer from
mapping complex semantics of ambiguous inputs.

What property should be learned by an ideal PrVLM? An ideal PrVLM should capture three po-
tential input uncertainties: (1) uncertainty from the text modality, (2) uncertainty from the image
modality, and (3) uncertainty from the text-image cross-modality. Uni-modal uncertainty is straight-
forward; if an input has more detailed information (e.g., describing more detailed information in
text, or capturing a very detailed and complex scene by photography), then it will have smaller un-
certainty, otherwise, it will have larger uncertainty (e.g., providing very high-level caption, such as
“person”, or only a part object with white background is taken by picture).

The cross-modal uncertainty should capture “how many possible instances can be matched to this
input?”. We can think this in two different viewpoints: text-to-image and image-to-text. The text-
to-image relationship is straightforward. If we have a caption “photo”, then it will be matched to
all photographs, and if we have a caption with a very detailed description (e.g., the full description
of the hotel room), then it will be only matched to specific images. Image-to-text relationships
are often determined by the dataset. For example, if we have a caption dataset exactly describing
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which objects are in the image, then we can think that an image with less objects will have larger
uncertainty. However, if we consider a caption dataset where an image has multiple captions, each
caption focuses on completely different objects, then an image with more objects will have larger
uncertainty. In other words, unlike text uncertainty originating from a text-to-image relationship,
image uncertainty originating from an image-to-text relationship is highly affected by the property
of the training dataset.

In practice, because our datasets have a mixed property and their captions are somewhat noisy, our
image uncertainty will have a mixed property, namely, unlike text uncertainty, there could be no
strong relationship between the absolute uncertainty value and the number of objects (or complexity
of images) – Empirically, we have more captions that exactly describing the scene, therefore, a
more simple image tends to have larger uncertainty. Also, unlike texts, images always have the
same number of pixels; the definition of “information” in images is not as straightforward as that of
texts. Since there is no “uni-modal” uncertainty supervision, a PrVLM trained only with image-text
relationships will have no guarantee to represent proper image uni-modal uncertainty. To enforce
a proper uni-modal image uncertainty, we first propose the uni-modal uncertainty supervision by
proposing the inclusion loss, namely, the original image embedding should be included by an image
embedding from the masked image.

A.2 2D VISUALIZATION FOR FIGURE 1

We use a linear projection, such as Principal Component Analysis (PCA), for the visualization. If
we use a non-linear projection from a high-dimensional space to a 2-dimensional space, there is no
guarantee that the projected Gaussian distribution still follows a Gaussian distribution. Therefore,
we project the high-dimensional embeddings to 2-dimensional space using PCA. All models are
trained on the DataComp 1B dataset with 1.28B seen samples (i.e., the 1.28B models in Table 1).

For both models, we select ten similar images and their corresponding captions from the Hierar-
Caps dataset. Then, for ProLIP, we randomly sample ten embeddings for each embedding using the
learned Gaussian distributions. We then apply PCA to the sampled embeddings for visualization.

A.3 PROBABILISTIC MATCHING LOSS VS. PROBABILISTIC PAIRWISE CONTRASTIVE LOSS

Probabilistic matching loss (PML) by PCME++ (Chun, 2024) and the proposed probabilistic pair-
wise contrastive loss (PPCL) use almost the same logit based on CSD (Equation (1)). However,
they have differences in (1) PML is based on the original CSD, which should compute L2-distance
between µs and (2) PML uses binary cross entropy loss (BCE) while PPCL uses log sigmoid loss.

The first difference can make numerical errors when the difference between µs is extremely small. It
is because L2 distance should compute a “square” operation, i.e.,

∑D
i=1(a

2
i − b2i )

2, where ai and bi
are scalar value of i-th dimension of vector a and b. On the other hand, we use logit based on matrix
multiplication µ⊤

1 µ2 (derived in Appendix A.4), showing a more stable and accurate computation in
terms of float precision.

The second difference can cause a fast gradient vanishing as already discussed by Chun (2024).
Chun (2024) thus employed additional techniques to mitigate the issue, e.g., pseudo positives and
mixed data sample augmentation method, such as Mixup (Zhang et al., 2018) and CutMix (Yun
et al., 2019). However, in this paper, we omit the techniques because simplicity is important when
we train with large-scale training samples. To tackle the issue, we employ log sigmoid loss and a
multiplication-based logit, resulting in a fast and stable convergence.

In our ablation study (Appendix C.2), we empirically show that the PML loss used by PCME++
fails to be converged when it is used by a stand-alone way without any deterministic loss (e.g., CLIP
loss). On the other hand, PPCL loss converges well even without any additional loss function.

Note that PCME++ and ProLIP use normalized mean for both training and inference to compute
cosine similarity as same as CLIP. Also, PCME++ and ProLIP can estimate a Gaussian random
variable by the parameterization trick, i.e., Z = (µ,Σ) = µ + Σ ⊙ (0, 1) (where, ⊙ denotes the
element-wise multiplication). In practice, because we use the closed-form solution for calculating
distance (CSD – Equation (1)) and loss functions (inclusion loss, PPCL), no sampling based on a
re-parameterization trick is required.
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A.4 DERIVATION OF EQUATION (2)

We first start from the fact that dL2 = ∥µ1 − µ2∥22 = 2− 2µ⊤
1 µ2 = 2− 2 · dL2cos when µ1 and µ2

are L2-normalized (i.e., ∥µ∥22 = 1). Namely, a cosine similarity dL2cos = 1 − 1
2dL2. By replacing

dL2 to dCSD (Equation (1)), we can conclude the derivation.

dCSDcos = 1− 1

2
dCSD = 1− 1

2
dL2 −

1

2
tr(σ2

v + σ2
t ) = dL2cos −

1

2
tr(Σv +Σt). (A.1)

A.5 DERIVATION OF EQUATION (3)

Let us assume two Gaussian distributions:

p(x) =
1√
2πσ2

1

exp

(
− (x− µ1)

2

2σ2
1

)
, q(x) =

1√
2πσ2

2

exp

(
− (x− µ2)

2

2σ2
2

)
First, we take the square of p(x):

p(x)2 =

(
1√
2πσ2

1
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2

2σ2
1

))2

=
1

2πσ2
1
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2
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1

)

Now, we compute the integral:∫
p(x)2q(x)dx =

∫ ∞
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∫ ∞

−∞
exp

(
− (x− µ1)

2

σ2
1

− (x− µ2)
2

2σ2
2

)
dx

We expand the terms in the exponent as follows:

− (x− µ1)
2

σ2
1

− (x− µ2)
2

2σ2
2

= −
(

1

σ2
1

+
1

2σ2
2

)
x2 +

(
2µ1

σ2
1

+
µ2

σ2
2

)
x−

(
µ2
1

σ2
1

+
µ2
2

2σ2
2

)
Let:

A =
1

σ2
1

+
1

2σ2
2

, B =
2µ1

σ2
1

+
µ2

σ2
2

, C =
µ2
1

σ2
1

+
µ2
2

2σ2
2

The term in the exponent simplifies to:

−A
(
x− B

2A

)2

+
B2

4A
− C

Now, the integral becomes:

1

2πσ2
1

√
2πσ2

2

exp

(
B2

4A
− C

)∫ ∞

−∞
exp

(
−A

(
x− B

2A

)2
)

Using the Gaussian integral formula, we have:∫ ∞

−∞
exp

(
−A

(
x− B

2A

)2
)
dx =

√
π

A

Thus, the integral becomes:∫ ∞

−∞
p(x)2q(x) dx =

1

2πσ2
1

√
2πσ2

2

exp

(
B2

4A
− C

)√
π

A

By taking logarithm and omitting constant terms, we have Equation (3).
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Figure A.2: More visual examples of the inclusion loss. The difference of KL and reverse KL (DKL) cannot
correctly capture the inclusion relationship.

A.6 MORE DISCUSSIONS RELATED TO INCLUSION LOSS

Figure A.2 shows more comparisons with the proposed inclusion loss and KL divergence. Specif-
ically, we compare inclusion loss with the difference of KL and reverse KL (DKL), namely,
DKL(Z1, Z2) = KL(Z1, Z2)−KL(Z2, Z1). As shown in the figure, the most significant problem
with DKL is that it cannot correctly represent the “inclusion” relationship. For example, consider
two random variables Z1 and Z2 where they do not include each other as shown in Figure A.2. In this
case, although Z1 and Z2 do not include each other, because DKL(Z1, Z2) = −DKL(Z1, Z2),
one of DKL(Z1, Z2) or DKL(Z2, Z1) will become positive, while the other will become negative.
Namely, DKL cannot correctly capture the inclusion relationship. On the other hand, in the same
scenario, our inclusion test always returns negative values as shown in the figure, which correctly
represents the inclusion relationship.

A.7 VIB LOSS

VIB loss is a simple regularization term to prevent the collapse of the estimated variance and is
widely used by previous probabilistic representation learning methods Oh et al. (2019); Chun et al.
(2021); Chun (2024). The VIB loss formulation is as follows:

LV IB(Z) = KL(Z∥N (0, 1)) = −1

2
(1 + log σ2 − µ2 − σ2). (A.2)

Please refer to Oh et al. (2019) for the full derivation.

A.8 ALGORITHM OF UNCERTAINTY-AWARE ZERO-SHOT PROMPT SELECTION

Remark: Let πc ∈ RN be the weight of each prompt, where N is the number of prompts (i.e., 80
for ImageNet) and c is the class index. Our goal is to find the best πi that the new text embedding
Znew
t =

∑
i π

i
cZ

i
t describe the given M image embeddings Zj

v . To achieve this goal, we optimize
πc to have the best posterior for Zt and Zv . For each class c, we sample K points from each Zj

v .
Namely, we have total M ′ = M ×K point embeddings as observations for class c.

We assume a Dirichlet prior for πc with α, where α controls the “uniformity” of the posterior. If we
choose large α, such as 10, then π will be more uniform and if we choose small α, such as 0.1, then
π almost becomes a Direc-delta distribution. We also set the initial π with the reversed uncertainty
score, i.e., the normalized 1/tr(Σt) for each prompt. We also employ a small trick for stability.
After we got the prior value, we add a small ε to Σt to make the overall operation stable. Now, we
explain the Expectation-Maximization (EM) algorithm for estimating the mixing proportions of a
mixture of N Gaussian components, incorporating a Dirichlet prior over the mixing proportions. For
simplicity, we omit the class index c for the remaining section.

We place a Dirichlet prior on the mixing proportions for the given α:

p(π) = Dirichlet(π | α), (A.3)

We have a dataset of M ′ observations {xj}M
′

j=1 and assume that the data is generated from a mixture
of N Gaussian distributions (i.e., the number of prompts).
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E-Step: Compute the responsibilities γjn, which represent the probability that observation xj was
generated by component n:

γjn =
πn fn(xj)
N∑
i=1

πi fi(xj)

,

where fn(xj) is the Gaussian probability density function of component n evaluated at xj :

fn(xj) =
1

(2π)D/2|Σn|1/2
exp

(
−1

2
(xj − µn)

⊤Σ−1
n (xj − µn)

)
.

Since Σn is diagonal, the computation simplifies to:

fn(xj) =

D∏
d=1

1√
2πσ2

nd

exp

(
− (xjd − µnd)

2

2σ2
nd

)
.

M-Step: Compute the effective number of observations assigned to each component:

Nn =

M ′∑
j=1

γjn.

Then, update the mixing proportions for each prompt n:

πn =
Nn + αn − 1

M ′ +
∑N

i=1(αi − 1)
=

Nn + α− 1

M ′ +N(α− 1)
.

Ensure that πn ≥ 0 and
∑N

n=1 πn = 1. We can simplify the algorithm as follows:

Algorithm 1 Bayesian Prompt Re-Weighting (BPRW)

1: Initialization (α: the Dirichlet prior hyperparameter, ε: the stability hyperparameter)
2: for each class c = 1 to C do
3: Collect M′ observations by choosing M number of Zv and sample K points from each Zv .

We can choose M “ground truth” observations where Zv is the embedding, including the c
class. Otherwise, we select M nearest samples from the base text prompt embedding of c.

4: for each prompt index k = 1 to K do
5: Set initial mixing proportion: πn ←

(
1

Tr(Σn)

)
/
(∑N

n=1
1

Tr(Σn)

)
.

6: Modify covariance matrix for stability: Σk ← Σk + ε I .
7: end for
8: repeat
9: // E-Step:

10: for each observation j = 1 to M ′ do
11: for each prompt index n = 1 to N do
12: Compute the responsibility γjn = (πn fn(xj) ) /

(∑N
i=1 πi fi(xj)

)
.

13: end for
14: end for
15: // M-Step:
16: for each prompt index n = 1 to N do
17: Compute Nn =

∑N
j=1 γjn

18: Update mixing proportion πn =
Nn + α− 1

M ′ +N(α− 1)
19: end for
20: until convergence
21: end for
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B MORE EXPERIMENTAL DETAILS

B.1 HYPERPARAMETERS

We use the AdamW (Kingma & Ba, 2015) optimizer following the official openclip implementa-
tion. We also tried AdamP (Heo et al., 2021), which was the main optimizer of PCME++ (Chun,
2024). We empirically observe that AdamP can improve the overall performances (e.g., average
performance from 57.3 to 57.8 under the same setting), but for a fair comparison, we follow the
protocol of OpenCLIP (Ilharco et al., 2021). We use a learning rate of 0.0005, beta1 of 0.9, beta2 of
0.95, weight decay of 0.2, and batch size of 512 for each GPU (i.e., the full batch size is 512 × 32
= 16384). We apply 10000 warmup steps and then the learning rate is decayed by cosine learning
rate scheduling. We use image augmentations of scaling 0.8 to 1.0, color jittering and grayscale.
Among the mini-batch, we select 12.5% image-text pairs and drop 75% tokens of them to compute
Linc(x⊂xmasked). In all experiments, we fix α1 and α2 in Equation (6) as 10−7 and 0.001, respectively.
We tried various combinations of α, but we found that the final result is relatively robust to the
choice of α unless we choose very large α. Similarly, we tested various ε and c for the inclusion loss
(Equation (5)), but as shown in Table C.5, the final result is relatively robust to the choice of the pa-
rameters. If not specified, we chose ε = −20 and c =1000, but for future research, we recommend
using ε = −100 and c =10, which empirically performs well and stable large-scale training.

B.2 FINE-TUNING DETAILS

During the project, we indeed aspire to train large models, such as ViT-H, ViT-SO400M, ViT-G or
ViT-g. However, as reported by Cherti et al. (2023), ViT-H/14 CLIP model with 34B seen samples
(achieving 78.0% ImageNet zero-shot accuracy) task 279 hours with 824 A100s. Using our resource
(32 H100s), training the same backbone from scratch takes almost 300 days. For this reason, we tried
to fine-tune the pre-trained strong backbones. Note that our goal is not to fine-tune the existing deter-
ministic VLMs, but we report four fine-tuning results, ViT-B/16 (76.0% IN-ZS), ViT-L/16 (80.5%
IN-ZS) and ViT-SO400M/14 (82.0% IN-ZS) pre-trained by SigLIP (Zhai et al., 2023) and ViT-H/14
(83.4% IN-ZS) pre-trained by DFN (Fang et al., 2024), for achieving a stronger PrVLM.

For the architectural consistency between all ProLIP models, we remove the attention pooling of
pre-trained SigLIP and fine-tune the models using [CLS] token-based pooling and fix the image
resolution to 224×224. This will lead to slightly worse performance of the fine-tuned models than
the original models. Note that we can implement both attention pooling and [UNC] token architec-
ture simultaneously, but we did not implement the architecture for simplicity. We again emphasize
that we do not aim to achieve the state-of-the-art zero-shot classification, instead, our goal is to ver-
ify whether ProLIP performs better by scaling up the base architecture even beyond ViT-B/16. For
the fine-tuning, we use the learning rate as 5.0e-5, the weight decay as 0.0, and the number of seen
samples as 1.28B.

B.3 TRAINING AND EVALUATION DATASETS

We mainly use the DataComp 1B dataset (Gadre et al., 2024), a filtered version of the LAION-5B
dataset (Schuhmann et al., 2022), as our training dataset. We had 1,121,356,767 number of valid
URLs among 1.39 billion URLs and 1,118,443,492 number of unique images after de-duplicating
URLs (there were 147,676,246 number of duplicated URLs in the DataComp 1B URLs). For the ab-
lation study, we use ConceptualCaption 3M (Sharma et al., 2018), ConceptualCaption 12M (Chang-
pinyo et al., 2021) and RedCaps (Desai et al., 2021) datasets.

We use 38 tasks from the DataComp evaluation suite: ImageNet (Russakovsky et al., 2015), 6
benchmarks for evaluating robustness under ImageNet distribution shifts, including ImageNet-A,
ImageNet-O (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), ImageNet v2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al., 2019) and ObjectNet (Barbu et al., 2019), and 13 VTAB
task (Zhai et al., 2019), including Caltech-101, CIFAR-100, CLEVR Counts, CLEVR Distance, De-
scribable Textures, EuroSAT, KITTI Vehicle Distance, Oxford Flowers-102, Oxford-IIIT Pet, Patch-
Camelyon, RESISC45, SVHN and SUN397. We also employ three retrieval tasks, including Flickr
(Young et al., 2014), MS-COCO Caption (Chen et al., 2015) and WinoGAViL (Bitton et al., 2022).
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For performing zero-shot classification, we use CSD as the distance between the given image and the
pre-extracted text template features representing each class. As CSD uses uncertainty (Equation (1),
this protocol uses uncertainty value for the zero-shot classification.

B.4 HIERARCAPS AND IMAGE TRAVERSAL DETAILS

The HierarCaps dataset (Alper & Averbuch-Elor, 2024) is a human-validated caption dataset where
each image has four levels of captions. For example, “water sports”⇒ “kite surfing”⇒ “kite surfer
on top of the board” ⇒ “kite surfer in the air on top of a red board”. These captions are human-
validated, namely, the level of the HierarCaps dataset is aligned to the “hierarchical perception” of
humans. As shown in Figure 7, the human-validated level of HierarCaps (i.e., human intuitions) is
aligned well to the learned uncertainty by ProLIP.

We also showed that the learned uncertainty can improve the image traversal task. The traversal
task needs two information: the closed text embedding and [ROOT] embedding for the given im-
age. Once the closed text embedding and [ROOT] embedding are chosen, we interpolate them with
50 equally spaced steps and find the closest text from the database for each interpolated caption.
Uncertainty information is used for the traversal task in two perspectives. First, we use CSD to re-
trieve captions, where CSD uses the uncertainty (Equation (1)). More importantly, we estimate the
[ROOT] embedding using uncertainty. Previous approaches use the average text embedding or null
text embedding as [ROOT] embedding. Instead of using average or null text embedding, we pro-
pose to use uncertainty-based [ROOT] embedding. As clarified in Section 4.4, we first retrieve the
most similar caption of the given image (following the common protocol (Alper & Averbuch-Elor,
2024)). Then, we search for the most inclusive caption of the retrieved caption in the database using
the inclusion measure that we proposed. Then, we use the most inclusive caption as the [ROOT]
embedding, which is a more plausible “root” compared to the average or null embedding.

As shown in Figure B.1, the [ROOT] embedding of CLIP is always closest to the “umbrella”, which
makes the image traversal by CLIP inaccurate. On the other hand, the [ROOT] embedding of ProLIP
correctly estimates the true hierarchy of the given image query.

Top-1
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captions
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images
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Missing
Captions
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man - opens
pizza box

man - opens
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Figure B.1: Image traversal comparison between ProLIP and CLIP. The image traversal examples on
HierarCaps (Alper & Averbuch-Elor, 2024). The highlighted captions denote the wrong captions.
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Figure B.2: Hierarchical COCO samples.

B.5 HIERARCHICAL IMAGES DATASET CONSTRUCTION

We construct the hierarchical image dataset by using the validation set of the COCO dataset (Lin
et al., 2014), which includes both images and their corresponding segmentation maps. First, the
images were filtered to retain only those where the smallest segment was larger than 5000 pixels.
Then, the three largest segments were extracted from each image and pasted onto a blank canvas in
descending order of size. We illustrate the generated samples in Figure B.2.

C MORE RESULTS

C.1 UNCERTAIN AND LONG CAPTIONS

The following single caption shows a very high uncertainty value despite its length (e.g., top 20%
uncertain samples in Figure 4). Note that Figure 6 shows that a caption with longer length might
have a higher uncertainty, but it is not always true if the caption only has almost useless information.
Below, “UNC” denotes the uncertainty value of the corresponding caption, namely tr(Σt).
UNC: 0.0415 “Searching for Meaning: Idealism, Bright Minds, Disillusionment, and Hope (Third in a Series of See Jane Win(tm) Books) Cover Image”
UNC: 0.0415 “Graphic design profession workdesk monitor printer books lamp pc computer stock illustration”
UNC: 0.0416 “Photo ID: 2299331 Views: 14221 UK - Air Force Eurofighter EF-2000 Typhoon FGR4 (ZK306) shot at Fairford (FFD / EGVA) UK - England July
21, 2013 By Michael Brazier-Aviation-Images”
UNC: 0.0416 “Vigo 36 inch Farmhouse Apron Single Bowl 16 Gauge Stainless Steel Kitchen Sink with Zurich Chrome Faucet, Grid, Strainer and Soap Dispenser”
UNC: 0.0418 “XIAOMI iHealth PT-101B Medical Baby High Sensitivity LED Electric Thermometer Underarm/Oral Soft Head Thermometer Adult BabyTther-
mometer Sensor”
UNC: 0.0462 “Maidofhonortoastus Scenic Sample Invoices Created With Our Online Invoicing Software With Licious Sample Invoice Template With Comely Free
Excel Invoice Also Invoice Template For Self Employed In Addition Used Vehicle Invoice And Invoice Payment Reminder As Well As Print Invoice Template Addition-
ally It Services Invoice Template From Invoiceberrycom With Maidofhonortoastus Licious Sample Invoices Created With Our Online Invoicing Software With Comely
Sample Invoice Template And Scenic Free Excel Invoice Also Invoice Template For Self Employed In Addition Used Vehicle Invoice From Invoiceberrycom 0.”
UNC: 0.0462 “Carterusaus Ravishing Invoice Freewordtemplatesnet With Inspiring Proforma Invoice With Easy On The Eye Chicken Receipts Also I Receipt No-
tice In Addition Cash Receipts Template And Read Receipt For Gmail As Well As Annual Gross Receipts Additionally Platepass Receipt From Freewordtemplatesnet
With Carterusaus Inspiring Invoice Freewordtemplatesnet With Easy On The Eye Proforma Invoice And Ravishing Chicken Receipts Also I Receipt Notice In Addition
Cash Receipts Template From Freewordtemplatesnet”
UNC: 0.0466 “Aldiablosus Ravishing Addition Worksheets Dynamically Created Addition Worksheets With Entrancing Addition Worksheets With Appealing Phon-
ics Worksheets Free Also Functions Worksheet Algebra In Addition Cellular Respiration Worksheet Middle School And Beginning Addition Worksheets As Well As
Real World Math Worksheets Additionally Chemical Change Worksheet From Mathaidscom With Aldiablosus Entrancing Addition Worksheets Dynamically Created
Addition Worksheets With Appealing Addition Worksheets And Ravishing Phonics Worksheets Free Also Functions Worksheet Algebra In Addition Cellular Respiration
Worksheet Middle School From Mathaidscom”

19



Table C.1: Zero-shot classification full results. “FT” denotes the fine-tuned results of the pre-trained models
with deterministic objectives. Details of fine-tuning can be found in Appendix B.2.
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CLIP 69.67 88.57 81.38 56.67 50.08 58.57 83.09 96.78 66.43 59.68 11.16 56.03 10.57 71.09 45.49 43.46 56.43 86.97 57.12
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ProLIP (ViT-B FT) 79.76 93.49 79.37 55.87 55.68 65.30 91.21 98.26 70.26 68.15 15.28 63.47 11.15 79.00 51.71 44.32 61.80 88.81 62.13
ProLIP (ViT-L FT) 83.24 95.27 81.13 58.07 57.66 71.59 93.72 99.02 73.97 66.53 16.23 66.76 18.24 82.26 55.76 45.86 67.06 91.15 65.93
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ProLIP (12.8B) 78.37 93.45 81.74 61.41 54.31 68.27 91.33 97.91 71.35 72.77 12.64 57.85 15.12 79.97 53.18 45.56 62.27 90.31 63.31

Table C.2: Comparison of fine-tuned ProLIP with 1.28B seen samples. ViT-H/14 is based on CLIP by DFN
(Fang et al., 2024), while the other models are based on SigLIP (Zhai et al., 2023). FLOps are for the base
pre-trained models, not modified architecture by ProLIP.

Backbone FLOps # Samples Seen ImageNet IN dist. shifts VTAB Retrieval Average

ViT-B/16 44.44G 1.28B* 74.6 62.2 61.2 58.3 62.1
ViT-L/16 136.41G 1.28B* 79.4 68.6 64.0 61.3 65.9

ViT-SO400M/14 233.54G 1.28B* 79.3 69.0 65.1 62.5 66.6
ViT-H/14 381.68G 1.28B* 79.4 68.3 64.4 61.6 66.9

C.2 MORE ZERO-SHOT CLASSIFICATION EXPERIMENTS

We show the full results of 38 tasks in Table C.1. We can observe that in most benchmarks, ProLIP
outperforms CLIP and SigLIP. We also fine-tune the pre-trained SigLIP or CLIP models with our
probabilistic training strategy. As we clarified in Appendix B.2, these models were slightly modified
due to the architectural difference between the original pre-trained model and our main ProLIP
model (e.g., attention pooling vs. [CLS] token pooling, and image resolution). Table C.2 shows
that the overall performance is improved by increasing the parameter size (from 62.1 to 66.9).

C.3 ABLATION STUDY

In this subsection, we conduct the ablation study of our design choices. We train the models on
Conceptual Caption 3M (Sharma et al., 2018), Conceptual Caption 12M (Changpinyo et al., 2021)
and RedCaps (Desai et al., 2021) datasets with 96M seen samples. This efficient setting enables to
train a model in 7 hours with 8 A100 NVIDIA GPUs. We measure the effectiveness of our design
choice in three categories. First, we measure ImageNet zero-shot top-1 accuracy (IN-Top1). Second,
we measure the average σ2 values of visual and textual modalities. If a model captures the inherent
uncertainty well, we assume that it will have a higher uncertainty for captions, rather than images.
Finally, we measure the HierarCaps recall, to measure whether the learned uncertainty captures the
hierarchy of captions well.
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Table C.3: Ablation study. All models are trained on Conceptual Caption 3M (Sharma et al., 2018), 12M
(Changpinyo et al., 2021) and RedCaps (Desai et al., 2021) where the number of seen samples is 96M.

Loss Unc Arch Linc(v⊂t) Linc(x⊂xmasked) IN-Top1 avg σ2
v avg σ2

t H.Cap Recall

CLIP - - - 35.5 - - 48.4
PCME++ + CLIP multi-head ✘ ✘ 33.6 0.0160 0.0077 55.2
PCME++ [UNC] ✘ ✘ 0.1 0.0354 0.0347 -
PCME++ + CLIP [UNC] ✘ ✘ 36.1 0.2552 0.2118 53.8
ProLIP [UNC] ✘ ✘ 37.4 0.3276 0.0745 44.8
ProLIP [UNC] ✔ ✘ 36.8 0.0076 0.2324 46.7
ProLIP [UNC] ✘ ✔ 37.5 0.3319 0.0610 47.9
ProLIP [UNC] ✔ ✔ 37.0 0.0086 0.2254 54.8

Table C.4: Large-scale ablation. All models are ViT-B/16 trained on DataComp 1B with 1.28B seen samples.

Linc(v⊂t) Linc(x⊂xmasked) ImageNet IN dist. shifts VTAB Retrieval Average

✘ ✘ 67.0 54.6 56.2 53.6 56.6
✔ ✘ 67.3 54.6 56.4 53.2 57.0
✘ ✔ 67.4 54.4 56.4 53.2 56.7
✔ ✔ 67.6 55.0 57.1 53.4 57.3

Table C.5: Impact of ε and c for the inclusion loss. Details are the same as Table C.4.

ε c ImageNet IN dist. shifts VTAB Retrieval Average

-20 1000 67.6 55.0 57.1 53.4 57.3
-10 1000 67.4 55.1 57.3 53.1 57.1
-5 1000 67.7 55.2 55.9 52.9 56.6
-5 100 67.8 55.3 56.7 53.0 57.5
-5 10 68.0 55.5 56.8 53.6 57.4
-10 10 67.8 55.3 58.5 53.0 57.9

-100 10 67.7 55.5 56.9 53.7 57.5

Table C.3 shows that (1) PCME++ loss is not trainable when we use more limited architecture
than multi-head architecture for estimating uncertainty. It supports our assumption discussed in Ap-
pendix A.3. (2) PCME++ loss becomes learnable if we use deterministic loss together. (3) Linc(v⊂t)

enforces images to belong into texts, namely image uncertainty tends to be smaller than text uncer-
tainty with the inclusion loss. (4)Linc(x⊂xmasked) makes the embedding space can capture the hierarchy
of data, namely, improves HierarCaps recall.

Although Table C.3 shows a good intuition for each loss function, we remark that the learned uncer-
tainty might need more training time to be more accurate. From this observation, we also compare
ProLIP models by ablating the main losses on DataComp 1B with 1.28B seen samples. Table C.4
shows that using all proposed objectives achieves the best ImageNet and VTAB results. Although
it shows slightly worse performance in retrieval, we found that its performance is reasonably good
compared to other variants, especially for the baseline (first row) in all measurements.

Table C.5 shows the impact of the choice of the stability parameters for inclusion loss. As we men-
tioned in Appendix B.1, the final performance is relatively robust to the choice of hyperparameters.
In practice, we recommend ε = −100 and c = 10 for both stable training and performance.

We also compare the efficiency of the proposed [UNC] token architecture compared to the deter-
ministic baseline and multi-head uncertainty estimate module by PCME++. We compare them with
five different architectures (ViT-B/32, ViT-B/16, ViT-B/16 with 768-width, ViT-L/16, and ViT-L/14).
Here, we only compare image encoders because image encoders always take the same image token
length, which makes it easier to compare the impact of different design choices. We report (1) the
input image token sizes for each architecture (“[UNC] token architecture” uses one more), (2) the
base parameters of the deterministic one, (3) inference time for 50k ImageNet validation images
(lower is faster), and (4) additional parameters compared to the deterministic baseline.
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Figure C.1: Samples with high/low image/text uncertainty. Samples are drawn from the DataComp small
subset. We also report CSD (similarity, lower is closer) between the pair, σ2

v , and σ2
t (lower is certain).

Table C.6 shows three findings. First, even if we increase the input token length, the actual inference
speed is not quadratically slow – ViT-B/32 and ViT-B/16 have the same Transformer capability
but only input lengths are different (49 vs. 196), but their inference times are 75.18s and 76.68s,
which is an almost neglectable change. If we choose a larger model (e.g., ViT-L), the difference
becomes larger, e.g., 137.77s vs. 176.95s, but it is still not a quadratic order. Second, [UNC] token
adds almost neglectable parameters (0.3M for B and 0.6M for L) and inference time compared to the
deterministic one. Finally, the multi-head architecture needs a large number of additional parameters
(e.g., 20M for B and 40M for L) and shows slower inference time, especially for a larger network
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Table C.6: Uncertainty architecture comparisons. The total inference speeds (in seconds) of each architec-
ture for 50k ImageNet validation images are shown (lower is better). The numbers in parentheses denote the
number of additional parameters compared to the deterministic baseline model.

ViT-B/32 ViT-B/16 ViT-B/16-768 ViT-L/16 ViT-L/14

# img tokens 49 196 196 196 256
Base param 151.7M 150.0M 197.3M 428.5M 428.4M

Multi-head 75.75s (+20.7M) 78.18s (+20.7M) 80.08s (+28.9M) 146.12s (+40.0M) 191.68s (+40.0M)
[UNC] (proposed) 75.24s (+0.3M) 76.84s (+0.3M) 78.61s (+0.6M) 137.99s (+0.6M) 177.82s (+0.6M)
Deterministic 75.18s 76.68s 78.53s 137.77s 176.95s
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Figure C.2: HierarImgs σ2
v statistics.

(e.g., 176.95s vs. 191.68s for ViT-L/14). Furthermore, in practice, multi-head architecture requires
more memory than [UNC] token, which makes it difficult to use a large batch size and scale up
to a larger backbone. On the other hand, [UNC] token only needs almost neglectable additional
parameters, inference speed, and memory size, which makes it easier to scale up.

C.4 MORE VISUAL EXAMPLES

We visualize more samples with combinations of various image and text uncertainties. Figure C.1
shows the example image-text pairs with their uncertainty values and similarity score measured by
CSD (Equation (1)). The results are similar to Figure 5.
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Figure C.3: Examples of HierarImgs when ProLIP fails to capture σ2
v by hierarchy.

C.5 MORE RESULTS FOR HIERARIMGS

Unlike text uncertainty (Figure 7), we observe that the visual uncertainty values are not discrimina-
tive by the levels in contrast to text uncertainty – See Figure C.2a. Lower-level images tend to have
a larger average uncertainty (0.015) than the original images (0.014), but their differences are not
significant between levels as texts. Instead of plotting every image in the same histogram, we plot
the difference of uncertainty between the original image and its maksed versions in Figure C.2 (b-d).

To understand why some images have reversed image uncertainty by their hierarchy, we visualize the
images whose original image is not included by level 0 images. Interestingly, as shown in Figure C.3,
we can observe that many images with improper uncertainty estimate by hierarchy actually have
wrong visual semantic hierarchy with severely occluded main objects. For example, in the upper
row image, the dog in the image appears at the second level, but it only reveals its part rather than
the whole body. These results show that proper filtering on the HierarImgs dataset should be required
for a more reliable evaluation.

C.6 MORE DISCUSSIONS FOR HUMAN PREFERENCE AND LEARNED UNCERTAINTY
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Figure C.4: The uncertainty value com-
parison between different levels.

In Figure 7, we show that the learned uncertainty by
ProLIP is well separable by the hierarchy of HierarCaps
which is validated by humans. Namely, a HierarCaps cap-
tion quadruple from level 0 (the most abstract one) to
level 3 (the most detailed one) has an inclusion relation-
ship verified by humans. From this observation, we can
conduct a virtual human study to determine whether the
learned uncertainty correctly captures human preference.

First, we measure how consistently the numbers in each
HierarCaps caption quadruple are ordered decreasingly.
Namely, we compute the following metric:

1

∥T ∥
∑
t∈T

I(tr(Σi
t)>tr(Σi+1

t )), (C.1)

where I denotes the indicator function and Σi
t denotes the uncertainty value of the level i of the

caption t. Using ViT-B/16 ProLIP model with 12.8B seen samples, 90.0% of adjacent uncertainties
satisfy decreasing order.
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Second, as similar to Figure C.2, we show the uncertainty value comparison between different levels
in Figure C.4. In the figure, we can observe that most of the level 3 (all) and 2 (≥ 0.997) captions
have smaller uncertainty values than their corresponding level 0 and level 1 captions. Also, large
number of level 3 captions (0.923) have smaller uncertainty values than their level 2 captions. We
found the level 0 and level 1 captions have relatively similar uncertainty values (but still 78.2%
level 0 captions have larger uncertainty than their level 1 caption, but as we observed in Figure 9
and B.1, the difference between level 0 and 1 captions are often vague (e.g., water sports vs. kite
surfing). Overall, we argue that ProLIP captures human uncertainty preference well as supported by
Figure C.4.

C.7 MORE DISCUSSIONS FOR BAYESIAN PROMPT RE-WEIGHTING (BPRW)

Hyperparameters. When ground-truth labels are not accessible (i.e., K = 0 in Table 3), we set
the α to 5. Then, we select 5 nearest images from each class embedding made by 80 prompts. We
then sample 10 samples from the selected image embeddings and get 100 point image embeddings.
Now, the sampled embeddings are used as observation of the algorithm (See Appendix A.8). We use
ε =0.02 for a stable convergence. For few-shot settings with K > 0, we set α to 2 and select 100

K
samples (e.g., if K = 9, then we sample 11 point vectors from the image embeddings).

Visualization of the learned weight. We show examples of π and its corresponding images. Fig-
ure C.5 shows the examples. We select three classes as examples and show their images and the
learned π. Interestingly, for “black-footed ferret” images, we found that the context “my” has more
than 0.5 weight. The actual images of black-footed ferrets are mostly composed of pet images, which
makes sense that “my” prompt matches the images the most. Similarly, we observe that “front cur-
tain” images are mostly low resolution due to the insufficient light in theaters, resulting in “a low
resolution” or “a dark photo” becoming the most important prompts. Lastly, we see the missile im-
ages are mostly in the museums, resulting in “a close-up” prompt becoming the most important, but
not significantly (0.1162) as much as the most contributing prompt of black-footed ferret (0.5130)
and curtain (0.3921) images.

Using the π with a few-shot setting (K = 5), we visualize the learned prompt weight. Figure C.6a
shows the histogram of the maximum πc for each c; an uniform distribution will have 0.01, while
larger maxπc denotes that specific prompts specifically selected for the class. In the figure, we
can observe that the π is generally larger than uniform. In addition, we plot the entropy of π in
Figure C.6b, where it shows a similar result.

C.8 MORE APPLICATIONS OF THE LEARNED UNCERTAINTY

Dataset filtering. Below, we show the DataComp CLIP filtering small track (filtering 12.8B noisy
web-crawled image-text pairs) by using our method and baselines provided by DataComp:

Table C.7: Dataset filtering. Results on DataComp small track (Gadre et al., 2024).

Size ImageNet IN dist. VTAB Retrieval Average

No filtering 12.8M 0.025 0.033 0.145 0.114 0.132
Random subset (25%) 3.2M 0.022 0.032 0.130 0.099 0.126
LAION-2B filtering 1.3M 0.031 0.040 0.136 0.092 0.133
English (fasttext), cap length, and img size 3M 0.038 0.043 0.150 0.118 0.142
Image-based & CLIP score (L/14 30%) 1.4M 0.039 0.045 0.162 0.094 0.144
CLIP L14 (20%) 2.6M 0.042 0.051 0.165 0.100 0.151
ProLIP distance (20%) 2.3M 0.042 0.047 0.167 0.117 0.154

ProLIP uncertainty-aware features help better filtering compared to the other baselines. However, we
note that ProLIP is not specifically designed for dataset filtering; proposing a new dataset filtering
method using ProLIP will be an interesting future work, but not the scope of the current paper.

Understanding image dataset. ProLIP’s image uncertainty is not the same as the “image uncer-
tainty” of classification tasks. In classification tasks, an image has a high uncertainty if it can be
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matched to “multiple classes”, while ProLIP assigns a high uncertainty if an image can be described
in “multiple different and various captions” (Appendix A.1). For example, assume an image with a
white background and a clear overall object shape. For classification, it has low uncertainty because
there is no confounder to the classification. However, ProLIP will assign a high uncertainty for this.

Class name: Black-footed ferret

Class name: Front curtain

Class name: Missile

[0.5130] a photo of my black-footed ferret.

[0.0250] itap of my black-footed ferret.

...

[0.0056] a origami black-footed ferret

[0.0056] a sculpture of a black-footed ferret

[0.3921] a low resolution photo of the front curtain.

[0.1102] a dark photo of a front curtain.

...

[0.0056] a drawing of a front curtain

[0.0056] a cartoon front curtain

[0.1162] a close-up photo of a missile.

[0.0842] a black and white photo of the missile.

...

[0.0056] the plushie missile

[0.0056] a doodle of the missile

Figure C.5: Visualization of learned π by BPRW for each class.
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Figure C.6: Statistics of the learned π by BPRW. We use π obtained from the few-shot setting with K = 5.

From this, we can think two different scenarios: (1) When all images have a homogeneous back-
ground and only the quality of the image determines the classification performance (e.g., MNIST),
(2) When images are natural images and task is inherently multi-object classification, but the labels
are single-labeled (e.g., ImageNet as discussed by (Beyer et al., 2020; Yun et al., 2021))

As the first example, we choose MNIST. We observe that the learned image uncertainty and the
MNIST accuracy show a strong negative correlation, (-0.98), namely, if an image is more uncertain
then ProLIP tends to estimate a wrong label. As the second example, we choose ImageNet-1k,
which shows a strong positive correlation (+0.98), i.e., a certain image tends to be wrongly classified
by ProLIP. This could be counterintuitive in “classification”, but it is a correctly estimated value.
For example, ImageNet contains various image distributions. Some images are thumbnail images
with a white background (high uncertainty) and some images are in-the-wild images with complex
background and objects (low uncertainty). In this case, a certain image (more complex images) will
be more “difficult” images to be classified, which supports the positive correlation.

Overall, ProLIP’s image uncertainty tendency can be used to understand an image dataset. Convert-
ing ProLIP’s image uncertainty to image classification uncertainty would be an interesting topic.

Uncertainty by image manipulation. We additionally show the relationship between image ma-
nipulation and uncertainty. We evaluate ImageNet 1k zero-shot accuracy by applying a center oc-
clusion. We applied 0% to 10% occlusion ratio (Table C.8). We also tested optimized noise by the
PGD attack (Madry et al., 2018) with sampled ImageNet (Table C.9):

Table C.8: Occlusion vs. image uncertainty. Numbers are measured in the ImageNet validation set.

Occlusion ratio 0% 2.5% 5% 7.5% 10%

ImageNet-1k zero-shot 74.6 74.1 73.8 73.5 73.2
avg(σv) 0.0148 0.0149 0.0152 0.0153 0.0153

Table C.9: PGD vs. image uncertainty. PGDk denotes the PGD attack with k iterations.

Clean PGD1 PGD5 PGD10 PGD40

ImageNet-1k zero-shot (1000 images) 72.9 20.0 3.8 2.6 2.5
avg(σv) 0.0147 0.0149 0.0167 0.0175 0.0190

Here, we observe that the image uncertainty is increased by more severe manipulation. Note that
as we discussed in “Understanding image dataset”, converting ProLIP’s image uncertainty to image
qualification would be an interesting topic, but we remain this for future work.
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D DISCUSSION AND LIMITATION

As ProLIP is based on a normal distribution with diagonal covariance, ProLIP also shares two con-
cerns discussed by Chun (2024): (1) using diagonal normal distribution would be insufficient to
represent compared to the full covariance, (2) if we use different probability distributions (e.g., von
Mises–Fisher distribution or Laplacian distribution), the closed-form for PPCL and inclusion loss
will not work anymore.

For the first concern, as already discussed by Chun (2024), the diagonal covariance would be insuf-
ficient if the dimensionality is too small (e.g., less than ten). In this case, using the full covariance
or mixture of Gaussian (MoG) will improve the representation power of the uncertainty. However,
in practice, we use a very high dimensionality, e.g., 768 for ViT-B/16, that can sufficiently capture
complex semantics. One also can argue that using MoG is more sensible to capture many-to-many
correspondences. However, if we have sufficiently large dimensionality, MoG will not be effective.
Consider a probabilistic embedding with 2-MoG, namely Z ∼ 1

2N (µ1,Σ1) with probability 0.5 and
Z ∼ 1

2N (µ2,Σ2) with probability 0.5. We can compute the expected CSD between two Zs (where
Z1 is parameterized by µ1
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where d(·) is CSD, i.e., d(µ1, µ2,Σ1,Σ2) = ∥µ1 − µ2∥22 + tr(Σ1 + Σ2). To simplicity, we omit
1
4 for the remaining derivation. Now, consider two virtual unimodal Gaussian embeddings W1 ∼
N (µ1
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2), where
⊕ denotes the “concatenation” operation, i.e., W1 and W2 have four times larger dimensionality than
Z1 and Z2. Interestingly, we can easily show that Equation (D.1) equals CSD between W1 and W2.
Note that this derivation is invariant to the diagonal covariance, but also holds for the full covariance.
In other words, using MoG is mathematically equivalent to using a larger dimensionality (as much
as the square of the number of modes); therefore, if we have a sufficiently large dimensionality that
can capture the ambiguity of the dataset, MoG is not a mandatory option.

The second concern can be raised when we use a different probability distribution. As discussed by
Chun (2024), all objective functions and computations are distribution-free, but the derived closed-
form solutions (e.g., CSD, inclusion loss) will not work anymore if we use different distributions.
One exception is MoG with equal mixing coefficients, but it equals simply using larger dimension-
ality. In practice, if we really need different distributions, we can use a Monte-Carlo approximation
as Chun et al. (2021), which is known to be inefficient and inaccurate (Chun, 2024).
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