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ABSTRACT 
The simulation of user behavior with deep reinforcement learn-
ing agents has shown some recent success. However, the inverse 
problem, that is, inferring the free parameters of the simulator from 
observed user behaviors, remains challenging to solve. This is be-
cause the optimization of the new action policy of the simulated 
agent, which is required whenever the model parameters change, is 
computationally impractical. In this study, we introduce a network 
modulation technique that can obtain a generalized policy that 
immediately adapts to the given model parameters. Further, we 
demonstrate that the proposed technique improves the efciency 
of user simulator-based inference by eliminating the need to ob-
tain an action policy for novel model parameters. We validated 
our approach using the latest user simulator for point-and-click 
behavior. Consequently, we succeeded in inferring the user’s cogni-
tive parameters and intrinsic reward settings with less than 1/1000 
computational power to those of existing methods. 

CCS CONCEPTS 
• Human-centered computing → User models; • Computing 
methodologies → Reinforcement learning. 
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1 INTRODUCTION 
User performance is a foundational factor when designing inter-
faces. If we can predict user performance over variations of inter-
faces through mathematical modeling, it will allow designers to 
rapidly evaluate, or even optimize, the interfaces. Advances in ma-
chine learning techniques and the increase in computational power 
over the past decade have opened new opportunities in research 
on user performance modeling, allowing researchers to address the 
high dimensionality, variability, and adaptability of human behav-
ior. In particular, studies on simulation models of user performance 
have made signifcant progress in recent years. Simulation models 
attempt to explain the user’s behavior as an integrated system of 
several sub-processes; therefore, they have a much larger number 
of model parameters than traditional user performance models and 
can beneft from the recent development of computational tech-
niques. In recent studies, simulation of button pressing [50], point-
and-click [19], typing behavior [31], layout learning [32], menu 
search [15], and mid-air movement [14, 23] are good examples of 
new possibilities for modern user simulation modeling. 

Similar to the other models, the simulation model can be used in 
two ways. The frst is generative use, predicting the variables of an 
interaction in which we are interested. This is similar to how Fitts’ 
law [24, 69] can provide insight into interface design by predicting 
the user’s target selection time. Second, the simulation model is 
used to infer user and interface characteristics by ftting the model 
to the given interaction data. From this inverse modeling, the main 
keyword of this study, we can estimate the free parameters of the 
model that represent the user and interface characteristics [34]. 
For example, we can estimate the throughput and y-intercept by 
ftting Fitts’ law to the target selection time data. By referring to the 
obtained parameters, it was possible to optimize graphical user in-
terfaces [49] and evaluate the performance of pointing devices [20]. 

In general, simulation models have a signifcant number of free 
parameters that have more explicit physical meaning because, un-
like traditional descriptive models, the mechanism behind user 
behavior must be precisely reproduced as a combination of sub-
processes. For example, a simulation model of point-and-click be-
havior recently published by Do et al. [19] includes 15 free parame-
ters representing the characteristics of the user and the system, such 
as signal-dependent motor noise [68], visual perception noise [72], 
precision of internal clock [40, 77], click success reward, and click 
failure penalty. Therefore, if we succeed in the inverse modeling of a 
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simulation model, we can obtain other rich insights about users and 
interfaces that are not possible with traditional performance mod-
els. However, inverse modeling using a modern simulation model 
has not been widely attempted because of a signifcant technical 
bottleneck, as described below. 

The basic principle of inverse modeling is to determine the free 
parameters of the model that best describe the given data. Con-
sequently, it is necessary to search for a high-dimensional free 
parameter space and fnd the parameter set that maximizes the like-
lihood of the given data. The problem here is that, generally, when 
the free parameters change, the simulated agent’s action policy must 
also be updated [34]. Action policy is a decision-making function 
that determines the action the agent will take in a specifc task sit-
uation. In modern user simulation models, the user’s action policy 
is expressed by a neural network that directly maps a task state 
to an action or one that predicts the utility of all available actions 
(the latter is the so-called Q-network; however, for simplicity, both 
are referred to as a policy network in this paper). The connection 
weights of the policy network can be determined through compu-
tational techniques such as reinforcement learning on the premise 
that the user has an optimal policy [26, 42], which takes several 
hours to a few days with a normal computer [19]. Consequently, an 
iterative search in the free parameter space becomes impractical. 

In this study, we present a novel technique that can overcome 
the bottleneck in the inverse modeling of user simulators. The core 
of the technique is to obtain a generalized action policy of the 
simulated user that can immediately refect changes in the free 
parameters in simulations. Accordingly, we design a policy model 
using a neural network architecture that can be conditioned (i.e., 
modulated) on the given free parameters of the simulator. More 
specifcally, our policy model adapts its mapping function by mod-
ulating the intermediate feature values (i.e., hidden states) of the 
network by feature-level concatenation or FiLM [54]. Consequently, 
a user simulator equipped with our generalized policy model can 
exhibit optimal behavior for any given free parameter (e.g., diferent 
cognitive parameters or reward formulation). Therefore, the cost of 
the iterative search for inverse modeling can be drastically reduced 
because the trained user simulator can now adapt its behavioral 
strategy with no further policy optimization. 

We demonstrated our proposed technique using a point-and-click 
task as an example, in which a state-of-the-art simulation model 
was recently published [19]. Point-and-click involves the selection 
of a distant target (stationary or moving) by controlling the cursor 
with an indirect pointing device such as a computer mouse. To 
perform a point-and-click task, users must visually perceive the 
state of the cursor and target (visual perception), plan and execute 
cursor movement (motor control), and decide when to perform a 
click (click decision-making). It is also known that this process is 
infuenced by the speed–accuracy bias instruction given to the user. 
For example, a user’s point-and-click varies signifcantly between 
asking them to click as fast as possible and to click as accurate 
as possible [83]. In relation to these processes, we inferred the 
following six free parameters of the state-of-the-art point-and-click 
simulation model [19]: precision of visual speed perception (σv ), 
coefcient of signal-dependent motor noise (nv ), precision of click 
decision-making (cσ ), reward weights for successful click (wsuccess), 
motor efort (wefort ), and elapsed time (wtime). 

We conducted the inference process in two parts: (1) three re-
ward weights (i.e., wsuccess , wefort , and wtime) were inferred at the 
population level, and then, (2) three cognitive parameters (i.e., σv , 
nv , and cσ ) were inferred at the individual level. We implemented 
simulation models equipped with our modulated action policy for 
each part, enabling the inference with signifcantly reduced com-
putational cost. For each part, we evaluated the generalization 
performance of our modulated action policy by verifying whether 
our policy model can sufciently approximate the simulation re-
sults from multiple individually trained policy models. To evaluate 
the inference performance, we collected point-and-click behavioral 
data from 20 participants and measured the baseline values of their 
cognitive parameters in controlled experiments. For the frst part of 
the inference, we examined whether changes in the inferred reward 
weights seem plausible according to the changes in the speed– 
accuracy bias instruction given to the user. Consequently, we could 
reasonably estimate the intrinsic reward settings of users. For the 
second part, we examined the correlation between the inferred and 
measured cognitive parameters of each participant. Consequently, 
we showed that two of the three targeted cognitive parameters (σv 
and cσ ) could be estimated with a moderate level of coefcient of 
determination (R2=0.50 for σv ; R2=0.61 for cσ ). This inference at 
the individual level with many users has been infeasible in previ-
ous studies. With our method of improving the efciency, the user 
simulator-based inference, which previously required hundreds or 
thousands of hours, is now accomplished in a few hours. 

To the best of our knowledge, no study has inferred multiple 
free parameters of reinforcement learning-based user simulators as 
efciently as ours. We expect that our proposed technique can be 
widely used in interface personalization, optimization research, and 
recommendation system research. We released all these datasets as 
open sources for future research1. The contributions of this study 
can be summarized as follows: 

• We proposed a generalized policy model implementation 
method that can signifcantly improve the efciency of the 
inverse modeling of a user simulator. 

• We collected point-and-click behavioral data for multiple 
users (N =20) and measured the baseline values of their cog-
nitive characteristics (i.e., visual perception noise, motor 
noise, and precision of click decision-making). The dataset 
is released as an open-source and can serve as a benchmark 
dataset for user simulator-based inverse modeling studies. 

• We demonstrated an inference process based on our pro-
posed method. We succeeded to infer multiple cognitive 
parameters and intrinsic reward settings of users from their 
point-and-click behaviors, even with signifcantly reduced 
computational costs. 

2 RELATED WORK 

2.1 Simulation Model of User Behavior 
Traditionally, user performance models have focused on the predic-
tion of aggregated performance variables that summarize interac-
tions over a period, such as trial completion time [2, 69], error rate 
[79], accuracy [40], and precision [27]. Similar to the well-known 

1https://github.com/hsmoon121/pnc-dataset 

https://1https://github.com/hsmoon121/pnc-dataset
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Fitts’ law [24], such models exhibit high robustness in predicting 
the user performance on target tasks; however, they cannot explain 
the cognitive processes through which the user performs the task 
over time. Conversely, simulation models of user behavior predict 
not only the aggregated performance variables of traditional mod-
els but also how the state of the user will change over time [19]. 
Previous simulation models of user behavior frst appeared in the 
1980s. GOMS [12] models predicted user behavior over time by 
considering the individual execution time of each cognitive pro-
cess. Cognitive architectures, such as ACT-R [4] and EPIC [36], 
enabled more sophisticated user simulation by modeling cognitive 
mechanisms, such as memory retrieval or parallel operations of 
perceptual-motor modules. 

Previous user simulation approaches are limited in that they re-
quire precise descriptions of the user’s sub-behavior to accomplish 
the sub-goals of the task (e.g., production rules), which were mostly 
hand-coded by modelers. As an alternative to the hand-coded rules, 
users’ sequential decision-making behavior can be modeled by 
learning an action policy, which is a decision-making function that 
determines the user’s action from the current task state. Such ap-
proaches build on the consensus that users behave to maximize 
their expected utility [8, 26, 42, 52]. That is, a user’s behavior can be 
assumed as optimal behavior within the possible behavioral space 
bounded by human capabilities (e.g., cognitive characteristics). Re-
inforcement learning (RL) can be applied to achieve the optimal 
behavior of an agent in an interactive environment, which is for-
mulated as a Markov decision process (MDP). In the MDP setting, 
an agent can take action in the current state and observe a reward 
and the next state, and through RL, the agent’s decision-making 
strategy (i.e., an action policy) is optimized. Previous attempts have 
been made to apply traditional RL methods (e.g., Q-learning) for 
user simulations, such as simulating eye movement [70] or dialog 
management [41]. However, the traditional RL methods are not 
suitable for solving problems with high-dimensional state and ac-
tion spaces; therefore, the previous approaches were also limited 
to addressing simple MDP problems. 

In the era of deep learning, the use of neural networks and 
reinforcement learning techniques has brought signifcant improve-
ments in fnding the optimal behavior of agents in a wide range of 
tasks, from playing video games [45] to acquiring physics-based 
motion skills [53]. In deep RL, an action policy is computed using 
neural networks and becomes suitable to manage environments 
with high-dimensional spaces. Therefore, simulation models have 
recently begun applying deep RL to achieve user behavior in per-
forming complex human–computer interaction (HCI) tasks. Recent 
approaches simulated user behavior as an integrated system of 
sub-modules that refect human capabilities and an optimized ac-
tion policy that governs the operation of the modules. For example, 
Cheema et al. [14] reproduced user behavior of performing a mid-air 
pointing task by biomechanically modeling the human upper limb 
and optimizing an action policy, which determines the joint torque, 
to minimize fatigue of the upper limb and pointing error. Other re-
cent studies, such as user simulation of button pressing [50], touch 
screen typing [31], menu search [15], visual search [33], layout 
learning [32], reaching movement [23], and point-and-click behav-
ior [19], also exhibited a wide range of HCI situations in which the 
RL-based approach can be used. 

While the application feld of the modern simulation model 
broadens, there is an open question as to how to efectively address 
the wide variability of behavior across individual users. Individual-
level user models are expected to achieve better prediction per-
formance than a model ftted to the entire user pool [34, 46, 47]. 
However, in previous approaches, the implementation of individual-
level simulation models consumed time and computing resources 
and thus was often impractical. This is because, if the free parame-
ters of the user simulator change (i.e., the behavioral space bounded 
by human capabilities changes), the action policy of the simulated 
user must be optimized. In this study, we aimed to solve this bottle-
neck to enable individual-level simulation. Our key approach is to 
implement a generalized action policy that can refect the variations 
in the simulated user’s behavioral or cognitive characteristics (i.e., 
the free parameters of the user simulator). 

2.2 Policy Modulation Techniques 
Changes in the free parameters of the user simulator can be consid-
ered as changes in the MDP formulation that the simulated agent 
faces. Therefore, our attempt to generalize the action policy is to 
solve a family of MDPs using a single policy network, which can 
be interpreted as solving the following two types of RL problems. 
First, if the cognitive characteristics of a simulated user change, 
the probabilistic transition function between states of the MDP 
changes accordingly. Therefore, training an action policy that can 
respond to variations in cognitive characteristics can be regarded as 
multi-task RL [37, 81, 82], which aims to train an agent’s policy to 
operate in multiple task environments. Second, we consider the in-
trinsic reward formulation of a simulated user, which governs their 
behavior in completing HCI tasks. Responding to the variations in 
the simulated user’s reward formulation can be regarded as multi-
objective RL [1, 66, 80], which aims to generalize an agent’s policy 
across several objectives in a task environment, thereby exhibiting 
optimal behavior for any given objective condition. 

To address these RL problems, a policy network should be mod-
ulated according to context parameters that contain information of 
a given task or objective, thereby changing its mapping function 
depending on the given context. Methods to modulate (or condition) 
neural networks can be classifed into the following three levels: 
The frst method involves simply including context parameters in 
the input of the network (i.e., conditioning on the input). Rakelly 
et al. [57] generalized the policy network over multiple tasks by 
inputting the latent representation of the task identity (i.e., task 
embedding) to the policy. Second, context parameters can be used 
to condition the intermediate features (i.e., hidden state) of the net-
works. One method is to concatenate context parameters to the 
hidden states (i.e., feature-level concatenation), as in recent studies 
that adapt a single policy network to multiple objectives [1] or tasks 
[87]. The hidden states can also be modulated by linear transfor-
mation (i.e., scaling and shifting) by relying on feature-wise linear 
modulation (FiLM) [54]. In FiLM, a separate network (i.e., FiLM 
generator) is trained with a primary network (e.g., policy network), 
and context parameters are mapped to coefcients that scale and 
shift the hidden states through the trained FiLM generator. Recent 
RL studies have demonstrated that the use of FiLM can allow the 
agent policy to be adjusted by task instructions [6] or adapted to 
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multiple task environments [76]. Finally, the weights of the net-
works can be entirely conditioned by given the context parameters. 
A hypernetwork [29] is a structure that enables such weight-level 
conditioning; that is, a secondary network (hypernetwork) takes a 
conditioning input (context parameters) and produces the weights 
of a primary network. In general, a hypernetwork entails more 
parameter changes in a primary network compared to the previous 
two conditioning levels; therefore, a higher modulation capacity at 
the cost of higher computational complexity is expected. Owing to 
its complexity, research on hypernetwork structure in the RL feld 
is still underway; however, there are a few recent studies related to 
the continual learning of task dynamics [30] or multi-agent RL [58]. 

Although approaches to implement RL-based simulation models 
have become diverse, such policy modulation techniques have not 
yet been introduced in the HCI feld. In this study, we propose 
a method to implement a policy network of a simulation model 
that can be modulated by varying the free parameters. Among 
the three levels of modulations, we consider feature-level modula-
tion techniques (feature-level concatenation or FiLM) to provide (1) 
enhanced modulation capacity compared to the input-level mod-
ulation and (2) more stability during optimization compared to 
weight-level modulation. With the modulation techniques, our im-
plemented simulation model can immediately adapt its behavior to 
any given free parameter. 

2.3 Inverse Modeling for HCI Research 
Inverse modeling of user simulation or performance models (i.e., in-
versely estimating the free parameters of the model from the given 
interaction data) can provide rich insight into the interaction design 
because the free parameters represent the characteristics of the user 
and the interaction environment. Typically, inverse modeling can 
be performed by loss minimization [21]. For example, we can devise 
a function that calculates the discrepancy (e.g., root mean squared 
deviation or χ2) between the model’s prediction and the given data, 
and to determine the parameters of the model that minimize the 
discrepancy (least-squares estimation). If the model includes more 
advanced probabilistic processes, we can determine the parame-
ters of the model that maximize the likelihood of observing the 
given dataset (maximum likelihood estimation, MLE). In addition to 
these, if the likelihood function of a probabilistic model is difcult 
to compute, simulation-based inference techniques such as approx-
imate Bayesian computation (ABC) [35] or Bayesian optimization 
for likelihood-free inference (BOLFI) [28] can be applied. 

Because traditional user performance models generally have a 
small number of parameters and assume a simple stochastic process, 
successful inverse modeling was possible based on least-squares es-
timation. For example, the free parameters of Fitts’ law or Steering 
law have been estimated for diferent input devices [3, 5, 10, 56], 
diferent body parts [38, 71], diferent operational biases [83, 85], 
and users of diferent age groups [9, 84]. More complicated stochas-
tic models of user behavior include the drift-difusion model for the 
reaction process [59] and Stocker’s model for speed perception [72]. 
Regarding the drift-difusion model, there is a study comparing the 
strengths and weaknesses of various inverse modeling techniques 
including MLE [60]. In the case of Stocker’s model, parameters were 
estimated based on MLE in the original paper [72]. Eye movements 

and movement of attention (EMMA) model [61] describes the move-
ment of gaze and visual attention, and the model parameters in the 
original paper were manually tuned to mimic human data. This 
hand-tuned MLE is also frequently observed in more advanced sim-
ulation models such as ACT-R [25, 62–64], which clearly shows that 
computational techniques for inverse modeling of user simulators 
have not been widely attempted until the early 2000s [34, 78]. 

Recently published RL-based simulation models on user behav-
ior [14, 15, 19, 32] have approximately 10 free parameters on aver-
age, and in most studies, the values were imported directly from 
previous studies or hand-tuned. In 2017, Kangasrääsiö et al. [34] 
frst attempted inverse modeling of an RL-based user simulator [15] 
through BOLFI. Kangasrääsiö et al. estimated the posterior distribu-
tion of the free parameters (e.g., users’ duration of fxations) given 
the observation dataset of the users’ menu search behavior. Through 
an iterative search in the parameter space, BOLFI discovered the 
free parameters that exhibit the least discrepancy between the sim-
ulation and observation. Consequently, the estimated parameters 
improved the model ft compared to using manually tuned parame-
ters in the original model [15]. The study deserves attention in that 
it frst introduced a principled method to infer the parameters of 
RL-based simulation models in HCI. However, the time inefciency 
problem of the iterative search remained; a single inference process 
took hundreds of hours (in CPU time) in [34], because it involved 
the process of newly optimizing an action policy for each new free 
parameter sample. The required computational time may increase 
to thousands of hours for simulation models dealing with more 
complex HCI tasks, thus making the inference impractical. With 
our proposed method, an action policy can be adapted according to 
any given free parameter without further optimization. Therefore, 
our method can facilitate the inverse modeling of user simulators 
by dramatically reducing the time required for the iterative search 
of free parameters. 

3 INFERENCE WITH A GENERALIZED USER 
BEHAVIOR SIMULATOR 

Given a reinforcement learning-based user behavior simulation 
model, we propose a technique to optimally maintain the simulated 
user behavior even if the free parameters of the simulated users 
are changed (policy modulation). A more efcient inverse model-
ing process using such a generalized simulation model was also 
demonstrated. In this section, we introduce a general formulation of 
RL-based user simulators and the implementation of our proposed 
technique is described in detail. 

3.1 RL-based User Behavior Simulator 
In general, an RL-based user simulator is implemented as follows: 
First, the simulated user’s cognitive and behavioral processes re-
quired to complete the target task and the characteristics of the 
given environment are mathematically modeled. This model usu-
ally includes free parameters representing the characteristics of 
the simulated user and the environment (e.g., cognitive capabilities, 
reward weights for diferent objectives, or setting of input devices). 
Then, the intrinsic decision-making process of the simulated user, 
which is involved in the cognitive and behavioral processes, can be 
formulated as MDP. Under the MDP formulation, the action policy 
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Figure 1: The structure of the modulated Q-network. 

of the simulated user determines the proper next action according 
to the current observation of the task environment (i.e., task state) 
at every decision-making step. 

In particular, in recent user simulation model studies [15, 19, 31, 
33], the optimal action policy of the simulated user is achieved by 
estimating the Q-values. The Q-value, an RL terminology, represents 
the expected cumulative reward until the episode ends when a 
corresponding action is taken at the current state. The action policy 
can be implemented as a neural network model, the so-called Q-
network, which predicts the Q-values of all available actions from 
the given task state. The Q-network can be optimized through deep 
RL algorithms, such as deep Q-network (DQN) [45], and by relying 
on the trained Q-network, a simulated user can retain the optimal 
policy of selecting the action with the largest predicted Q-value. 

Previous studies have obtained the optimal policy (i.e., trained 
a Q-network) when the free parameters of a simulated user are 
fxed to specifc values (i.e., values of an average person). There-
fore, whenever the characteristics of the simulated user or task 
environment are changed, the policy must be newly optimized. 

3.2 Policy Modulation 
3.2.1 Modulated Q-network. We introduce a method to generalize 
the optimal policy of the simulation model to the variations in 
the free parameters, that is, enabling policy modulation. Among 
the known modulation approaches (Section 2.2), we empirically 
found in this study that the best modulation performance for the 
latest point-and-click simulation model [19] is achieved when the 
targeted free parameters are involved in the intermediate features 
of the Q-network (i.e., feature-level modulation). The choice of the 
modulation method is crucial to achieve optimal policy modulation 
of simulation models, and our empirical fnding for the point-and-
click simulation model may not be directly applicable to other 
simulation models. In this study, we present a modulated Q-network, 
which is a network structure that enables feature-level modulation 
by providing the targeted free parameters as auxiliary inputs. 

The presented structure consists of two neural networks: a pri-
mary Q-network and a secondary encoder network (Figure 1). The 
primary network predicts the Q-values of all available actions from 
a given task state. The primary Q-network can change the map-
ping to Q-values through feature-level modulation according to the 

latent parameters. The secondary network (i.e., encoder network) 
generates the latent parameters; the secondary network receives 
the targeted free parameters and outputs their latent representa-
tion. Through the training process (RL) along with the primary 
Q-network, the secondary network learns to extract the informa-
tion from the free parameters required for the efective modulation 
of the primary Q-network. 

We consider two representative methods of feature-level mod-
ulation that have been proven suitable for modulation in recent 
RL studies: feature-level concatenation [1, 87] and FiLM [6, 54, 76]. 
Concatenating the latent parameters into hidden states prevents 
dilution of the information of latent parameters as it passes through 
neural layers; therefore, the primary Q-network can efectively in-
corporate the conditioning information to predict the Q-values. 
FiLM provides a more direct method to modulate hidden states 
through linear transformation (scaling and shifting). In the case of 
using FiLM, the latent parameters are employed as shifting and scal-
ing coefcients applied to each hidden state; that is, the secondary 
network acts as the FiLM generator in [54]. The modulation method 
(e.g., feature-level concatenation or FiLM) and the structure of the 
networks (e.g., width and depth of hidden layers) can be changed 
depending on the types of targeted free parameters because the 
abstraction process required to achieve optimal modulation may 
difer according to each type of free parameter. 

3.2.2 Training method. To train the modulated Q-network, we ex-
tended the previous RL algorithms that train a Q-network (the DQN 
family). In this section, we describe the training method with an 
example of the original DQN [45]; however, this can be equally 
applied to the DQN family. For example, in Sections 7.1.2 and 8.1.2, 
we apply two diferent DQN-based algorithms, namely, the enve-
lope multi-objective Q-learning (MOQL) [80] and double DQN [74]. 
During the training phase of DQN, decision processes of the agent 
at every timestep (a tuple of MDP transition, (st , at , rt , st +1), repre-
senting the state, action, reward at timestep t , and state at timestep 
t+1, respectively) are stored in the replay memory. At every train-
ing step, the Q-network of the agent is updated by employing the 
batch of the transitions sampled from the replay memory, in the 
direction of minimizing the temporal diference (TD) error defned 
as follows: 

r + γ max Q(st +1, a ′) − Q(st , at ), 
a ′ 

where γ denotes the discount factor of the MDP, Q(s, a) denotes the 
estimated Q-value by the Q-network. As training proceeds, the Q-
network accurately estimates the Q-values and the agent acquires 
the optimal behavior. 

For the generalization of the action policy, the targeted free 
parameters (denoted as z) are newly sampled at the beginning 
of each training episode. That is, in each episode, the simulated 
user explores a task environment with diferent free parameters 
(e.g., diferent cognitive characteristics or reward formulations). 
The sampled free parameters are stored in the replay memory 
along with each transition of the episode; that is, the experience 
tuple is extended as (st , at , rt , st +1, z). A batch of the extended 
experiences is used to calculate the TD error of the estimation from 
the modulated Q-network as follows: 

r + γ max Q(st +1, a ′|z) − Q(st , at |z), 
a ′ 
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Figure 2: Overview of the BOLFI process to infer free param-
eters of the simulation model (z) corresponding to a real user. 
BOLFI constructs a regression model that estimates the dis-
crepancy between the user’s observed behavior (yo ) and the 
simulated behavior of the model (yz ) with a given z. BOLFI 
proceeds with the following iterative process: (1) BOLFI pro-
poses the next parameter sample, znext , that is likely to lead 
to low discrepancy, based on the regression model; (2) the 
regression model is updated with the discrepancy value ob-
tained from the simulation based on znext . In this paper, 
we implemented a generalized simulation model over varia-
tions in z. Therefore, there is no need to optimize the simula-
tion model for every proposed z. After sufcient iterations, 
BOLFI estimates the posterior of z for the given observed be-
havior, p(z |yo ). 

where Q(s, a |z) denotes the estimated Q-value by the modulated 
Q-network, which is conditioned on the sampled free parameters z. 
Through backpropagation, the modulated Q-network (i.e., the pri-
mary Q-network and secondary encoder network) can be optimized. 
A framework such as the prioritized experience replay (PER) [67], 
which can increase the training efciency based on the TD error of 
each experience tuple, can also be applied to the training with no 
further modifcation. 

3.3 Inferring Free Parameters with User 
Simulator 

The simulated behavior refecting any given free parameters now 
can be obtained without the need to re-train the action policy; that 
is, the simulation model is generalized over the free parameters. 
Next, with the generalized simulation model, we are facing the 
inverse modeling problem, that is, inferring the free parameters 
from a real user’s observed behavior. 

Simulation-based inference methods (e.g., ABC [35]) provide a 
principled method to infer the free parameters by systematically 
searching the parameters that best describe the observed behavior 
of the simulation. In this study, we applied BOLFI [28],a recent 
simulation-based inference method (also a variant of ABC), which 
was frst introduced in HCI in [34]. In the latest attempt on inverse 
modeling [34], hundreds of hours (in CPU time) were required 
for a single inference because every single simulation for given 
simulation parameters entails the process of newly training the 
action policy. With no re-training process, our generalized simula-
tion model can signifcantly reduce the computational cost of the 
inference process. 

The BOLFI procedure is shown in Figure 2. BOLFI requires: a 
simulation model M, which reproduces the behavioral data yz 
given simulation parameters z; observed behavioral data yo ; and a 

Figure 3: The point-and-click task environment covered in 
this study. Center: A right-handed user performs a point-
and-click task on screen with a mouse device. Lef: The xy 
coordinate of a target and a cursor on the screen. Right: The 
xy coordinate of a user’s hand. 

function to mesasure the discrepancy between yz and yo , denoted 
as ∆(z). The inference goal is to determine z showing the least ∆(z). 
The essence of BOLFI is to estimate the discrepancy (∆(z)) accord-
ing to the given simulation parameters by constructing a regression 
model (via Gaussian process). Whenever yz is simulated using a 
new z, BOLFI updates the regression model based on the evaluated 
discrepancy. Our generalized simulation model can immediately ob-
tain yz for the new z with no further policy optimization; therefore, 
we can signifcantly improve the time efciency compared to previ-
ous approaches. The learned regression model is used to propose 
the next z to simulate (znext ). At every iteration, BOLFI chooses the 
znext following its acquisition rule—usually, z with the minimum 
lower confdence bound value of the predicted discrepancy. This al-
lows the simulation to be conducted mainly in the low-discrepancy 
region, therefore reducing the number of simulations required for 
the inference. After running sufcient simulations, BOLFI estimates 
a posterior of z that shows the least ∆(z) given yo , and we can use 
maximum a posteriori (MAP) estimation to obtain the exact values 
of the inferred free parameters. More details of BOLFI can be found 
in the original paper [28]. 

4 POINT-AND-CLICK SIMULATION MODEL 
We demonstrate the performance of the proposed technique us-
ing the latest user behavior simulator implemented based on deep 
RL [19]. In particular, the simulation model realistically simulated 
the point-and-click behavior of users. The model has 15 free pa-
rameters regarding the user’s physical characteristics, cognitive 
characteristics, and intrinsic reward settings. In this section, the 
model is briefy introduced. 

4.1 Point-and-Click Scenario 
The simulation model assumes a specifc point-and-click scenario. 
The user uses a computer mouse to control the cursor on the screen. 
A circular target is moving at a constant velocity on the screen; 
when the target hits the edge of the screen, it changes the direction 
of movement as if refected, and the speed is maintained (Figure 3). 
The user is right-handed and the distance between the user’s head 
and the display is 63 cm. The user is supposed to press the mouse 
button when the cursor is within the target. When the user presses 
the mouse button, the trial ends regardless of whether the target 
is successfully acquired, and a new target appears with a random 
velocity at a random location. 
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in [19]. The simulated user’s point-and-click behavior 
(target-tracking and clicking) is implemented through a 
combination of fve sub-modules. 

4.2 Point-and-Click Process 
The model describes the user’s point-and-click process by intro-
ducing fve sub-modules (Figure 4). First, the motor control module 
creates a motor plan that allows the cursor to reach the target’s 
future location. At this point, a variable that determines how far 
into the future the user will generate the motor plan is called the 
prediction horizon Th . Second, the click action module plans a timing 
to perform a click action to acquire the target while the cursor is 
moving toward the target. At this point, the module also decides 
whether to actually execute the planned click action, which is ex-
pressed as the value of the variable K (K=1 when decided to click, 
K=0 when decided to not click). Third, the visual perception module 
describes the process by which the user perceives the future po-
sition and velocity of the target and the cursor. The results of the 
noisy perception are passed to the motor control module and used 
to generate a motor plan. Fourth, the mouse module determines 
the movement of the user’s hand to implement the cursor motor 
plan generated from the motor control module. In this module, 
the gain function of the mouse (implemented with Libpointing 
library [13]) and the deviation of the cursor trajectory owing to the 
rotation of the mouse are considered. Finally, the upper limb module 
determines the degree of rotation of the mouse and incorporates 
motor noise into the hand movement. 

4.3 MDP Formulation 
To train the simulation model through RL, the sequential decision 
process of the simulated user in the point-and-click task environ-
ment should be formulated as MDP, that is, in the form of states, 
actions, and rewards. The model defnes the state and action space 
as follows: 

• State: 11-dimensional vector with continuous values con-
sisting of perceived information of the target and cursor, 
specifcally, (1) perceived cursor position (2D) and velocity 

(2D); (2) perceived target position (2D) and velocity (2D); (3) 
hand position (2D); and (4) target radius (1D). 

• Action: Click decision K (a binary value) and prediction 
horizon Th (a discrete value ranging from 0.1 to 2.5 s with a 
0.1 s interval). Therefore, the number of available actions at 
each state is 50 (2 K × 25 Th ). 

• Reward: Four objective terms describe an agent’s task perfor-
mance: (1) successful click, (2) failed click, (3) motor execu-
tion efort, and (4) elapsed time. At the agent’s j-th decision-
making (at timestep t=tj ), numerical values corresponding 
to each objective term are defned as follows: 
– Successful click: 1 if clicked successfully, otherwise 0. 
– Failed click: 1 if clicked unsuccessfully, otherwise 0. 
– Motor execution efort: sum of the absolute accelerationÍtj +1of the simulated hand, that is, ∥ Ûvh ∥, where vÛh is the t =tj
acceleration of the simulated hand. 

– Elapsed time: time interval between the decision-making, 
that is, tj+1 − tj . 

The aggregated reward r j can be expressed as wrew · rj , 
where rj is a vector in which each component represents 
the numerical value for each objective, and wrew is a vec-
tor representing the reward weight of each objective (= 
[wsuccess, wfail , wefort , wtime]

T ). wsuccess is set to have a posi-
tive value (compensation), whereas the other three weights 
have negative values (penalty). Compared to the original pa-
per [19], we added the last time term in this paper, because 
we empirically found that adding the time term showed bet-
ter reproduction of users’ various point-and-click behaviors 
under diferent speed–accuracy bias instructions (e.g., less 
accurate but faster behavior). The model in [19] can be re-
garded as a specifc case in which wtime is set to zero. 

4.4 Free Parameters 
There are 12 free parameters in the model that determine the opera-
tional characteristics of each module. They represent the cognitive 
and physical characteristics of a simulated user. Furthermore, if we 
consider the weights that determine the reward setting in the MDP 
formulation, the number of free parameters of the model increases 
to 16. Table 1 lists the symbols and meanings of all parameters, and 
the values they assumed in the original model [19]. 

Among the parameters, Tp is a constant time interval that hu-
mans spend for motor planning in the intermittent motor control 
process, and is a value that can be regarded as having a slight dif-
ference between users [11]. Conversely, ten of the parameters (σv , 
nv , np , cσ , cµ , ν , δ , lse , lew , and lws ) can show signifcant difer-
ences between users. Among them, lse , lew , and lws related to the 
geometry of the user’s arm can be measured explicitly. However, 
the remaining parameters (σv , nv , np , cσ , cµ , ν , and δ ) can only 
be implicitly estimated by analyzing user behavior in controlled 
laboratory experiments. The remaining four parameters (wsuccess , 
wfail , wefort , and wtime) related to the user’s intrinsic reward set-
ting may also show diferences between users. Furthermore, these 
parameters can change even for the same user if the context of 
the interaction changes (e.g., diferent speed–accuracy instructions 
given to the user) [83]. 
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Table 1: Free parameters of the point-and-click simulation model in [19]. Module: Sub-module of the point-and-click model 
to which each parameter belongs. Inference: Targeted parameters to be inferred in this study. 

Parameter Meaning Value in [19] Module Inference 

Tp 
σv 

Unit time interval for motor planning 
Visual perception noise 

0.1 s 
0.15 

Motor control 
Visual perception ✓ 

nv Motor noise constant (parallel) 0.2 Upper limb ✓ 
np 
lse 

Motor noise constant (perpendicular) 
Shoulder-to-elbow length 

0.02 
25.7 cm 

Upper limb 
Upper limb 

lew Elbow-to-wrist length 25.7 cm Upper limb 
lws Wrist-to-hand length 6.43 cm Upper limb 
cσ Precision of internal clock 0.09015 Click action ✓ 
cµ 
ν 

Implicit aim point 
Drift rate 

0.185 
19.931 

Click action 
Click action 

δ Visual encoding precision limit 0.399 Click action 
fgain()
wsuccess 

Mouse acceleration function 
Reward weight of successful click 

OS X 10.12 
14 

Mouse 
– ✓ 

wfail Reward weight of failed click −1 – ✓ 
wefort Reward weight of motor efort −1 – ✓ 
wtime Reward weight of elapsed time 0 – ✓ 

Excluding explicitly measurable parameters and parameters that 
do not difer between users, seven cognitive parameters (σv , nv , np , 
cσ , cµ , ν , and δ ) and four reward parameters (wsuccess , wfail , wefort , 
and wtime) are worth inferring by analyzing the user’s point-and-
click behavior. Among the cognitive parameters, σv represents the 
precision with which the user perceives the speed of the target, that 
is, the user’s visual perception performance. nv and np are propor-
tional constants that determine the amount of signal-dependent 
motor noise added to each of the parallel and perpendicular direc-
tions when the user wants to move the hand to the desired position. 
In general, nv and np are expected to be highly correlated with 
each other (actually verifed in Section 6.2.2). Finally, cσ , cµ , ν , and 
δ are variables indicating the quality of the user’s click process 
[39, 40], and it is known that cσ (precision of the user’s internal 
clock) shows a signifcant diference between users [40, 51]. 

Consequently, we decided to infer the three cognitive parameters 
(σv , nv , and cσ ) and four reward parameters (wsuccess , wfail , wefort , 
and wtime) of the model by analyzing the user’s point-and-click be-
havior in this study, considering the importance of each parameter 
and the correlation between the parameters. 

5 STUDY OVERVIEW 
We conducted three studies (Studies 1–3) to demonstrate and eval-
uate our inference technique using the latest point-and-click simu-
lation model introduced in Section 4. Specifcally, we present two 
diferent generalized point-and-click simulation models based on 
diferent structures of the modulated Q-network: Mr ew , a simula-
tion model generalized across the variations in reward weights of 
the simulated user (Study 2), and Mcoд , a simulation model gener-
alized across the variations in cognitive parameters of the simulated 
user (Study 3). Those studies are summarized as follows: 

• Study 1: We built a dataset of point-and-click behavior with 
20 participants. This dataset was used in Studies 2 and 3 to 
evaluate the performance of our inference technique. 

• Study 2: By analyzing the point-and-click behavioral data of 
20 participants, we inferred the reward parameters (wsuccess , 
wfail , wefort , and wtime) of the participants, which varied 
for diferent speed–accuracy bias instructions (emphasis on 
speed, accuracy, or both). 

• Study 3: By analyzing the point-and-click behavioral data 
of 20 participants, we inferred the cognitive parameters (σv , 
nv , and cσ ) of each participant. 

In the following sections, we explain the implementation and 
evaluation methods and discuss the results of each study. 

6 STUDY 1: POINT-AND-CLICK INFERENCE 
DATASET 

In Study 1, we built a dataset of point-and-click behaviors. This 
dataset is used in Studies 2 and 3 to evaluate the performance of our 
inference technique. The participants performed four diferent tasks 
in two days (Figure 5). Three of these tasks are to estimate baseline 
values of participants’ cognitive parameters (σv , nv , and cσ ). These 
tasks have been sufciently verifed in previous studies [39, 43, 72] 
for their signifcance in measuring each cognitive parameter. The 
other one is to measure the point-and-click behavior of participants, 
which will actually be used for inference in future studies. 

6.1 Method 
6.1.1 Participants. Twenty participants were recruited (13 women 
and 7 men). Among the 20 participants, 11 were under the age of 
30, 5 were in their 30s, and 4 were in their 40s. Their average age 
was 30.4 (σ =8.65). We recruited participants from a wider age range 
than in previous studies [7, 19, 34, 51]. This increases the external 
validity of our inference study. All participants were right-handed 
and reported themselves familiar with the desktop environment. 

6.1.2 Tasks. Participants performed four tasks in two days. Each 
task is described as follows. 
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Figure 5: Overview of the laboratory experiment in Study 
1. Day 1: Participants performed the three diferent tasks. 
Description of each experimental setup and the measured 
cognitive parameter are presented at each stage. Day 2: Par-
ticipants performed a point-and-click task under three task 
instruction conditions (Accuracy, Speed, or Equal). 

• Speed discrimination task [72]: In each trial, a pair of drifting 
grating stimuli were shown to the participant (Figure 5(a)). 
The stimulus only existed for a certain duration and then dis-
appeared, and the participant must then answer which stim-
ulus drifts at a higher speed (two-alternative forced choice 
(2AFC) paradigm). In this process, participants were asked 
to focus on the fxation point at the center of the screen. 
The speed of each stimulus can be varied from one trial to 
another. One of each pair of stimuli was a reference grating, 
and the other was a test grating, and the position of each 
stimulus (left or right) was randomly assigned in each trial. 
From this experiment, we expected to measure the baseline 
of the participant’s visual perception noise parameter, σv . 

• Moving-target acquisition task [39]: Participants were asked 
to press a button when a moving target was positioned 
within an acquisition zone (Figure 5(b)). The target appeared 
repeatedly over a specifc period and was a line moving from 
left to right at a constant speed. Participants could not skip 
targets and press the button at least once in each trial. From 
this experiment, we expected to measure the baseline of 
participants’ internal clock precision, cσ . 

• Ballistic aiming task [43]: Participants were asked to move a 
cursor from a starting point to a target point (Figure 5(c)). The 
trial started when the participant clicked the starting point. 
Subsequently, when the cursor starts moving, the starting 
point, target point, and cursor disappear. Consequently, the 
user’s movement becomes ballistic. When the cursor stops 
moving, the trial ends and a new starting and target point 
are given. From this experiment, we expected to measure 
the baseline of participants’ motor noise constant, nv . 

• Point-and-click task: Participants performed the same task as 
the point-and-click scenario assumed by the point-and-click 
simulation model (described in Section 4.1, Figure 5(d)). 

6.1.3 Design. All tasks followed a full factorial within-subject de-
sign. The independent and dependent variables for each task design 
are described below. 

• Speed discrimination task: The experiment had an indepen-
dent variable, the speed of the reference grating (1, 2, 4, and 
8 deg/s in visual angle). The speed of the test grating was de-
termined by following the two interleaved adaptive staircase 
procedures commonly used in 2AFC tasks. The speed of the 
testing grating was between half and double the reference 
speed of the corresponding trial. The dependent variable 
was participant’s discrimination performance (success prob-
ability) at each reference grating speed. Fifty discrimination 
trials were performed for each reference speed condition. 
The reference speed was randomly selected for each trial 
while controlling the total number of trials to 50. 

• Moving-target acquisition task: The experiment had three 
independent variables (P , tc , andWt ). P represents the period 
in which the target appears repeatedly and had two levels (1 
or 2 s). And tc represents the duration in which participant 
could observe the movement of the target that appeared in 
each trial, and had three levels (0, 0.08, or 0.25 s). Wt is the 
duration in which the target stays within the acquisition 
zone and has two levels (0.08 or 0.13 s). The dependent vari-
able is the probability of participant’s acquisition failure for 
each P-tc -Wt combination. For each combination, 50 target 
acquisition trials were performed. 

• Ballistic aiming task: The experiment had one independent 
variable, the distance from the starting to the target point 
(12, 32, 66, 113, 174, 248, 336, 437, or 552 pixels). To prevent 
participant learning, the starting point was randomly deter-
mined for each trial as one of the four candidate positions 
(see Figure 5(c)). For each distance condition, 40 cursor move-
ment trials were performed. The dependent variable is the x-
and y-direction standard deviation of the cursor end point 
distribution. 

• Point-and-click task: The experiment had one independent 
variable, task instruction (Accuracy, Speed, or Equal). In the 
Accuracy condition, participants were instructed to click as 
accurately as possible. In the Speed condition, participants 
were instructed to click as quickly as possible. In the Equal 
condition, participants were asked to click as quickly and 
accurately as possible. To observe sufciently diverse point-
and-click behaviors from participants, we randomized the 
speed and radius of the target over a wide range (speed: 0– 
510 mm/s, radius: 9–24 mm) from one trial to another. Each 
participant performed four blocks of trials per task instruc-
tion condition, and each block consisted of 200 consecutive 
trials. The cursor and target trajectories were both logged. 

6.1.4 Material. The captured images of the task screen are shown 
in Figure 6. The implementation of each task is described in more 
detail below. 
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Figure 6: Captured screens of (a) speed discrimination, (b) moving-target acquisition, (c) ballistic aiming, and (d) point-and-
click tasks. 

• Speed discrimination task: Drifting gratings were imple-
mented as circular patches with a diameter of 3 degrees (in 
visual angle). The gratings were implemented as broadband 
stimuli covering spatial frequencies from 1/3 cycles/deg to 
2 cycles/deg (as in [72]). The phase of each frequency com-
ponent was randomized and the power spectrum fell as f −2. 
Patches were centered at 6 degrees on either side of the fx-
ation point. The contrast2 of the grating was set to 0.5 for 
both the reference and test. 

• Moving-target acquisition: The speed of the target was au-
tomatically set for each condition such that it took P for 
the target to pass through the given screen width. After the 
target speed was determined, a black matte was overlaid to 
satisfy the tc condition, and an acquisition zone that satisfes 
the Wt condition was created. 

• Ballistic aiming: The candidate locations of the starting point 
were 100 or -100 pixels shifted along the x or y-axis from the 
base point (i.e., 1/3 point from the left of the screen, vertically 
centered). A standard cursor pointing to the upper-left side 
was used. 

• Point-and-click task: The color of the target was red and 
the color of the background was white. A standard cursor 
pointing to the upper-left side was used. 

6.1.5 Procedure. The experiment was conducted in two days to 
minimize the efects of fatigue on participants. On the frst day, all 
participants were informed about the overall procedure and signed 
a consent form before the experiment. Participants performed the 
tasks in the order of speed discrimination, moving-target acquisi-
tion, and ballistic aiming. Each participant was given practice trials 
for each task before the measurement. Participants were given a 
5-minute break between tasks. The approximate time taken for each 
task was as follows: speed discrimination (20 min), moving-target 
acquisition (15 min), and ballistic aiming (30 min). The experiment 
on the frst day took approximately 1.5 h for each participant. 

On the second day, before collecting the point-and-click behav-
ioral data, the participants were provided a practice session of a 
block of trials. Subsequently, participants sequentially performed 
the three task instruction sets (4 blocks each) in a randomized and 
counterbalanced order. The experimenter verbally provided the 
task instructions (Accuracy, Speed, or Equal) to participants before 
the start of each block. Participants were given a 1-minute break 
between blocks and a 5-minute break between each task instruction 
set. Each block was performed within approximately 5 min, and the 

2A value obtained by dividing the maximum intensity amplitude of a grating by the 
maximum value of the intensity diference the monitor can display. 

entire data collection process per participant took approximately 
1.5 h for the second day. 

6.1.6 Apparatus. Participants performed the experiment in a desk-
top environment (Mac OS Catalina 10.15) consisting of a single 
monitor display, keyboard, and mouse. A 24-inch (527.04 mm × 
296.46 mm) monitor (Lenovo ThinkVision T24i-10) was used. The 
refresh rate of the display was set to 60 Hz. A wired optical mouse 
(Logitech G102) was used with a resolution of 1,000 DPI, a polling 
rate of 125 Hz, and a constant control-display gain of 10.4. The 
moving-target acquisition task was implemented with a size of 
900 × 400 pixels, and all other task applications were run on a 
full-screen (1920 × 1080). All task applications were implemented 
in Java language and run at a frame rate of 60 Hz or higher. A 
TES-137 luminometer was used to measure the grating contrast in 
the speed discrimination task. 

6.2 Results 
6.2.1 Analysis. The cursor and target trajectories obtained from 
the point-and-click task will be used subsequently to evaluate the 
inference performance of our technique in Studies 2 and 3. However, 
before that, we performed a preliminary analysis of the participants’ 
point-and-click performance (success rate and trial completion time) 
in this study. The success rate is the rate at which the participant 
acquired the target. The trial completion time is the time interval 
between the moments when the target is given and when the par-
ticipant clicks. Meanwhile, we found a signifcant diference in trial 
completion time between the frst block and subsequent blocks 
from Helmert contrast (p=0.008, Figure 7). This was considered 
as an efect of the participants’ learning; thus, the frst block was 
removed from all subsequent analysis and inference studies. 

The goal of the remaining three tasks, except for the point-and-
click task, is to estimate the baseline values of the cognitive param-
eters of participants. The analysis process for each task is described 
in detail below. 

• Speed discrimination task: For each speed condition of the 
reference grating, we obtained the corresponding psychome-
tric function for each participant. From this, we determined 
the standard deviation of the participants’ speed perception 
distribution in each condition. This process is performed 
through MLE combined with the Monte Carlo method, as-
suming that the distribution of the participant’s speed per-
ception is Gaussian. For more details, refer to the original 
paper [72]. Before conducting the experiment, we performed 
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Figure 7: Mean trial completion time according to blocks 
in each task instruction (lef: Accuracy, center: Equal, right: 
Speed). The results of 12,000 trials per block (20 participants 
× 3 task instructions × 200 trials) are averaged. The error bar 
represents one standard error of the mean. 

′log transformation of grating speed (s = ln(1 + s/0.3)) ac-
cording to the original study [72]. Through this transfor-
mation, it can be assumed that the standard deviation (σ ) 
of the participant’s perceptual distribution is relatively con-
stant even when the reference speed is changed. According 
to the original study, σ can be expressed as the product of 
the grating speed (s ′) function and the contrast (c) function: 
σ = д(s ′)h(c). The cognitive parameter σv to be obtained is 
the average of д(s ′) for each participant. We approximated 
h(c) to be 2.0, the average value observed in the original 
study, and estimated д(s ′) values from σ . 

• Moving-target acquisition task: According to the model pro-
posed by the previous study [39], for each P-tc -Wt condition, 
we can express the participant’s error rate E as follows: � �

1 Wt − µ µ
E = 1 − er f ( √ ) + er f ( √ ) ,

2 σ 2 σ 2 

where µ = cµ · Wt 

cσ · Pand σ = q . 
1 + (P/(1/(eν tc − 1) + δ ))2 

By ftting the empirically observed error rate to the above 
equation, we can estimate the cognitive parameters (cσ , cµ , 
ν , and δ ) for each participant. 

• Ballistic aiming task: We frst simulate the users’ ballistic 
aiming movement with various nv -np sets, using the point-
and-click simulation model (Section 4). Through this, we can 
simulate the end point distributions of the ballistic movement 
for each nv -np set, and quantitatively obtain the slope of 
standard deviations of the distributions according to target 
distances. We determine the nv and np , which minimize 
the discrepancy between the slope of the participant and 
that of simulation, and set them as the measured values 
for each participant. The simulation was set up under the 
same conditions as the task performed by the participants 
(for more details of the simulation, refer to the previous 
study [19]). 

6.2.2 Cognitive parameters. We obtained the participants’ base-
line cognitive parameters as follows: σv (µ=0.169, σ =0.082), cσ 
(µ=0.149, σ=0.084), cµ (µ=0.385, σ =0.142), ν (µ=15.766, σ=5.376), δ 
(µ=7.81e−3, σ =1.43e−2), nv (µ=0.245, σ =0.056), and np (µ=0.047, 

Figure 8: Point-and-click performance (success rate in blue 
and completion time in orange) of participants according to 
three cognitive parameters (lef: σv , center: nv , right: cσ ). Lin-
ear regression results are presented as solid lines along with 
the bands of 95% confdence interval. 

***
***

** *** ***
***

Figure 9: Box plots of the point-and-click performance (lef: 
success rate, right: completion time) according to the task in-
structions. Statistically signifcant diferences are indicated 
(**: p < 0.01, ***: p < 0.001). 

σ=0.033). Among the measured σv values, we observed that the 
two extremely high values (0.730 and 1.191) induced the instability 
of optimization of the point-and-click simulation model in Section 4. 
Specifcally, owing to the extremely high visual perception noise, 
the simulated user’s perceived information of the target and cursor 
varied signifcantly, which prevented convergence of the simulated 
user’s policy. This problem of needing an appropriate upper bound 
for σv is our new fnding that has not been reported in the original 
paper [19]. To enable stable optimization of the simulation model, 
we adjusted the σv values of two outliers to the upper three-sigma 
value (=0.415). As mentioned in Section 4.4, a signifcant correlation 
existed between nv and np (Pearson’s r=0.460, p=0.041). Therefore, 
in subsequent studies, we assumed a linear relationship between 
the nv and np values, according to their measured mean values 
(np = 0.192 × nv ). We also examined the correlation between the 
three targeted cognitive parameters (σv , cσ , and nv ). There was 
a signifcant correlation between σv and cσ (Pearson’s r =0.643, 
p=0.002); however, no other signifcant correlations were found 
(p>0.05). 

6.2.3 Point-and-click performance. The average success rate of all 
participants was 45.4%, and the trial completion time was 0.89 s 
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(σ =0.20 s). Figure 8 shows the point-and-click performance of indi-
vidual participants according to their measured cognitive parame-
ters. We examined the correlation between participants’ cognitive 
parameters and their performance. Both σv and cσ exhibited a 
high correlation with the success rate (for σv , Pearson’s r=−0.603, 
p=0.005; for cσ , Pearson’s r=−0.721, p<0.001). No other signifcant 
correlations were found. 

Figure 9 shows how the task instruction changed the partici-
pants’ behavioral strategies (levels of speed–accuracy trade-of). 
The average performance of the participants according to each 
task instruction was as follows: for Accuracy, success rate=52.1%, 
completion time=1.295 s (σ=0.383 s); for Equal, success rate=44.4%, 
completion time=0.768 s (σ =0.173 s); for Speed, success rate=39.2%, 
completion time=0.635 s (σ=0.112 s). A repeated measure ANOVA 
revealed that there were signifcant efects of the task instruction 
on both performance metrics (for success rate, F2,38=76.56, p<0.001; 
for completion time, F2,38=24.62, p<0.001). We indicated all the post 
hoc test (pairwise t-test) results between the conditions in Figure 9. 

6.3 Discussion 
In Study 1, we built a dataset of point-and-click behaviors from 
20 participants through a controlled laboratory experiment. Com-
pared to the latest point-and-click dataset (mean success rate=62.3%, 
mean completion time=0.89 s) [51], the participants in our dataset 
exhibited a lower mean success rate (45.4%) and the same mean 
completion time (0.89 s). This was expected because the demo-
graphic composition of participants changed and, in particular, the 
participants’ average age increased (25.02 to 30.40). In addition, 
the change in the mouse setting (e.g., control-display gain) could 
contribute to the lower mean success rate. 

6.3.1 Baseline values of cognitive parameters. We obtained base-
line values of the cognitive parameters from each of the 20 partici-
pants. This allows us to reliably determine the free parameters of 
the simulation model than simply applying typical mean values 
reported in previous studies. Compared to the previous point-and-
click study [19], which employed the literature value (see Table 1), 
the mean baseline values of the three target cognitive parameters 
were diferent as follows: σv (increased from 0.15 to 0.169), nv (in-
creased from 0.2 to 0.245), and cσ (increased from 0.090 to 0.169). 
The distributions of measured values include the literature values 
within the one-sigma range (i.e., µ ± σ ). 

6.3.2 Correlations between cognitive parameters. The correlation 
between nv and np was expected as it is a general observation. In 
addition, we found an unexpected correlation between σv and cσ , 
two of the three target cognitive parameters for inference. Both σv 
and cσ represent participant’s ability to perceive a specifc visual 
stimulus given for a short period. In this perception process, partic-
ipants have to encode visual stimuli in their working memory (or 
visual image store) within a short time [12]; thus, the performance 
of both speed perception [22], which is related to σv , and timing 
perception [16], which is related to cσ , can be commonly infuenced 
by the capacity of participant’s working memory. If the correlation 
between those target parameters was not discovered, the inference 
(BOLFI) would be performed using an incorrect prior distribution of 

the target parameters, thereby leading to an incorrect posterior es-
timation (i.e., degrading the inference performance). Therefore, the 
correlation between σv and cσ was an important observation and 
it was considered in the inference process in Study 3 (Section 8.2). 

6.3.3 Efects of cognitive parameters. The participants’ success ra-
tios on the point-and-click trials were infuenced by two of the 
three measured cognitive parameters (σv and cσ ). We found that 
a participant with a lower visual perception noise (lower σv ) or a 
more precise internal clock (lower cσ ) performed the point-and-
click task more accurately. To successfully click on the target, it is 
necessary to accurately estimate both the relative speed between 
the target and the cursor and the timing at which the cursor is po-
sitioned within the target; thus, this is an expected result. However, 
nv did not demonstrate a correlation with any task performance in 
our experiments. The nv variations between the participants may 
not be sufciently diverse to cause a signifcant diference in the 
point-and-click behaviors. In the future, a group of users with more 
special motor characteristics may be included (e.g., seniors or kids). 

6.3.4 Efect of task instruction. When given diferent task instruc-
tions, the participants clearly exhibited diferent task performances; 
a signifcant diference was observed in every combination of the 
pairwise t-test (Figure 9). A clear and well-known trade-of relation-
ship was observed; the participants could perform the tasks more 
precisely as needed by spending more time. Our results accurately 
replicated the results of previous studies [44, 83], reporting that a 
user can fexibly change their point-and-click strategy according to 
a given task instruction. 

7 STUDY 2: INFERRING REWARD WEIGHTS 
In Study 2, we infer the reward weights (wsuccess , wfail , wefort , and 
wtime) of participants. This is equivalent to identifying the intrin-
sic reward settings of users to perform a point-and-click task. To 
achieve this, we frst train Mrew , a generalized simulation model 
over variations in reward weights. The model is implemented with 
an action policy based on our modulated Q-network that uses the 
reward weights as targeted free parameters to generalize. Conse-
quently, the optimized simulation model (Mrew ) can immediately 
adapt its behavior according to given reward weights. We demon-
strate that, using Mrew , the intrinsic reward settings of users can 
be inferred with improved efciency. 

7.1 Model Training 
In order to train Mrew , we applied the envelope MOQL [80], which 
is one of the most recent multi-objective RL algorithms. For an 
agent behaving in a task environment with several objective terms, 
the algorithm provides a specialized method of training the action 
policy that can respond according to the given reward weights 
(wrew ) using a form of multi-objective Q-network. We describe the 
details of the method of incorporating the modulated Q-network 
into the algorithm. 

7.1.1 Policy model architecture. We implemented the policy model 
of Mrew based on our modulated Q-network, and modifed the 
output part to have the form of a multi-objective Q-network [80] 
(Figure 10). The core diference between the multi-objective and 
general (single-objective) Q-networks is the use of a vectorized form 

https://time=0.89
https://F2,38=24.62
https://F2,38=76.56


Speeding up Inference with User Simulators through Policy Modulation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

Reward

weights

(                 )

Action

Modulated

Q-network

Vectorized

Q-values

Aggregated

Q-values

Dot

product

Task state

Figure 10: The structure of the policy model of the general-
ized simulation model over reward weights (Mrew ). 

of Q-values. While single-objective Q-networks predict a scalarized 
Q-value for each state-action pair, a multi-objective Q-network 
predicts a vectorized Q-value for each state-action pair, consisting 
of a Q-value corresponding to each objective term. In the multi-
objective case, the vectorized Q-values are dot-produced by the 
reward weight vector (wrew ) to form an aggregated Q-value. Thus, 
the optimal behavior of a trained agent can be achieved by selecting 
the action with the highest aggregated Q-value. 

We set the modulated Q-network to receive the target reward 
weight vector (wrew ) as an auxiliary input along with the task state, 
and to output the vectorized Q-values. The primary Q-network 
(within the modulated Q-network) consisted of three fully con-
nected (FC) neural layers. The frst two layers consisted of 64 hid-
den units with ReLU activation. The output layer had a size of 200, 
determined by the product of the action dimension (=50) and the 
number of objective terms (=4). We used feature-level concatena-
tion, which empirically exhibited better modulation performance 
than the FiLM method in this setting; however, FiLM can be a better 
modulation method for simulation models in other task environ-
ments. The secondary encoder network consisted of three FC layers. 
The frst two layers consisted of 16 hidden units with ReLU acti-
vation. The feature size of the last layer (i.e., the size of the latent 
parameters) was 16. We allowed the concatenation of the latent 
parameters only in the frst hidden states (i.e., outputs of the frst 
layer). We used normalized values of the reward weights (values 
mapped between −1 and 1) when they were fed as inputs of the 
modulated Q-network. 

7.1.2 Training details. We followed the envelope MOQL algorithm 
to train the policy model (pseudo-code in [80]). The key diferences 
between the envelope MOQL algorithm and the original DQN are 
as follows: (1) the vectorized rewards and Q-values are used; (2) 
the target reward weights are randomly sampled for every episode; 
therefore, the agent explores over various reward settings; (3) a 
specialized loss function (enabling homotopy optimization) is used 
for model updating; (4) the training data (i.e., experiences) for the 
model update are augmented by applying multiple diferent reward 
weights to a single MDP transition. 

During the training phase, we fxed wfail to −1 and sampled 
the remaining three reward weights within the following ranges: 
[2.5, 40] for wsuccess ; [−8, −0.5] for wefort ; and [−12, −0.75] for wtime . 
Because the optimal action (with the highest aggregated Q-value) is 
determined by the ratio of the reward weights, we could indirectly 

investigate the efect of wfail by adjusting the remaining three 
reward weights. The cognitive parameters of the simulated user 
were set to the average values of the 20 participants measured in 
Study 1. The mouse acceleration function (fgain) was set to the same 
as used in the experiment in Study 1 (with fxed control-display 
gain), and other remaining free parameters (Tp , lse , lew , and lws ) 
were set to the values of the previous study [19]. We trained the 
model for total 1M training steps and the entire training process 
took 4–5 days (using Intel Xeon E5-2630v4 CPU, 2.2 GHz). An 
Adam optimizer with the inverse-square-root learning rate schedule 
[75] (learning rate=0.001, warm-up step=5K) was used. The replay 
memory size was 100K, the batch size was 1024, and the discount 
factor (γ ) was 0.95. 

7.2 Inference 
With the trained Mrew , we applied BOLFI to ft (i.e., infer) the re-
ward weights (wsuccess , wefort , and wtime), for each of the three task 
instructions, that best describe the participants’ behavioral data col-
lected in Study 1. For each task instruction, there were 12,000 trials 
of behavioral data from the 20 participants, and we used 2,400 trials 
for the inference. Accordingly, during BOLFI, simulation of 2,400 
trials, under the same conditions as performed by participants (the 
same initial cursor position, target position, velocity, and radius), 
was conducted per sample acquisition process. We binned the 2,400 
trials using the target speed and radius (four equal-frequency bins 
for each). Using eight bins, the discrepancy function was defned asÍ 
bins((SRobs − SRsim)2 + a × (CTobs − CTsim)2), where SR and CT 

denote the average success rate and completion time in each bin 
(the subscripts obs and sim represent observed and simulated data), 
respectively, and a is the coefcient that balances the two metrics. 
BOLFI was performed with 100 sample acquisition processes for 
each task instruction. Each inference process (i.e., simulation of 
2,400 trials × 100 samples) took approximately four hours. 

7.3 Evaluation and Results 
7.3.1 Generalization performance. To evaluate the generalization 
performance of our trained Mrew , we investigated the simulated 
behaviors of Mrew adapted to diferent sets of reward weights. 
We individually trained simulation models with the same sets of 
fxed reward weights (one individually trained model per fxed 
reward weight set), and compared the simulated behaviors of the 
individually trained models and our Mrew that was modulated with 
the corresponding reward weight set. If Mrew exhibits simulated 
behavior similar to that of each individually trained model for each 
reward weight set, the generalization performance of Mrew can be 
judged as satisfactory. 

For this evaluation, we prepared seven sets of reward weights (i.e., 
corresponding to seven hypothetical users with diferent intrinsic 
reward settings); one set had the intermediate (mid) values for the 
three reward weights (wsuccess , wefort , and wtime); the other six sets 
had one of the three reward weights high or low (2×3 combinations). 
We set the (high, mid, and low) values of each reward weight to have 
the same distance from the logarithmic scale as follows: wsuccess 
(25.0, 10.0, 4.0), wefort (−5.0, −2.0, −0.8), and wtime (−7.5, −3.0, −1.2). 
For each of the seven sets, one individually trained model was 
trained based on the same setting with Mrew (each model took 
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Figure 11: Simulated point-and-click performance (lef: suc-
cess rate, right: completion time) of the individually trained 
models (x-axis) and our Mrew (y-axis). The simulated results 
of the two models are compared under 7 diferent reward 
weight sets. Linear regression results are presented as solid 
lines along with the bands of 95% confdence interval. 

approximately 1.5–2.5 days for training). The key diferences in 
the individually trained model compared with Mrew were (1) the 
absence of policy modulation and (2) fxed reward weights during 
the training phase. 

We compared the simulated behavior of the models in two as-
pects: (1) the simulated task performance and (2) the simulated 
user’s prediction horizon (Th ) trend within a trial. For the compari-
son, we simulated 9,000 trials for the individually trained models 
and Mrew , under the same initial conditions. Figure 11 shows the 
comparison of the simulated performance of both models. Our 
model (Mrew ) reasonably reproduced the task performance of the 
individually trained models with high coefcients of determination 
(success rate: R2=0.91, completion time: R2=0.93). We also compared 
the simulated user’s Th , which is determined solely by the action 
policy, and thus confrmed whether the action policy of Mrew has 
actually adapted. Figure 12 visualizes the change of Th in a trial 
according to the variations in the values of each reward weight, 
for the individually trained cases and Mrew , respectively. Mrew 
clearly reproduced the variation in Th shown in the individually 
trained models, especially, in terms of the increase or decrease in 
Th according to the variations in each value of the reward weight. 

7.3.2 Inference performance. Figure 13 shows the inferred re-
ward weights for each task instruction. For inference, we used 
the MAP values of the posterior distribution obtained through 
BOLFI. The exact values of inferred reward weights were as 
follows: wsuccess=6.08, wefort =−4.46, wtime=−3.19, for Accuracy; 
wsuccess=3.10, wefort =−4.19, wtime=−11.82, for Equal; wsuccess=2.50, 
wefort =−2.64, wtime=−12.00, for Speed. These values represent the 
reward formulations for each task instruction in which average 
participants are expected to have; that is, the reward settings are 
inferred at the population level. 

7.4 Discussion 
In Study 2, we validated our method to implement the generalized 
model Mrew . The trained Mrew exhibited satisfactory generaliza-
tion performance in that the model successfully reproduced the 

simulated behaviors of all individually trained models with dif-
ferent sets of reward weights. While the previous point-and-click 
model [19] employed a hand-tuned reward formulation, we demon-
strated that our Mrew can provide an automated method to infer the 
reward formulation from the observed behaviors of participants. 

7.4.1 Efects of reward weight variation. An advantage of the gener-
alized model is that, as shown in Figure 12, we can easily investigate 
the change in the simulated behavior according to the variations 
in each reward weight, without the need to train a separate model 
with the changed reward formulation. We confrmed that each of 
the three reward weights (wsuccess , wefort , and wtime) infuenced the 
simulated behavioral strategy (i.e., the prediction horizon during a 
trial) as follows: the increase in wsuccess and wtime , and the decrease 
in wefort led to the decrease in Th on average. The shorter Th indi-
cates that the simulated user assumes the strategy of tracking the 
moving target by spending motor efort, rather than waiting for 
the target to approach them. From this viewpoint, the change in 
Th in Figure 12 can be interpreted as follows. The users increase 
their Th when they intend to lower their efort (under high |wefort |). 
Conversely, the users spend more efort by decreasing Th when 
they need to perform the task more accurately (i.e., high |wsuccess |) 
or faster (i.e., high |wtime |). 

7.4.2 Computational eficiency. A noteworthy contribution of our 
inference method is its enhanced computational efciency. Our 
method exhibited a signifcant reduction in the computational cost 
for the inverse modeling of HCI models. For example, the inverse 
modeling of the menu-search model [34] reported that one parame-
ter acquisition took six hours, mainly because of the model training 
period. The model training period of the point-and-click model was 
even longer than that of this previous study. For example, the train-
ing process of each individually trained model took approximately 
two days. However, our inference method took a few minutes for 
one parameter acquisition, because no training period was required 
as the model could be adapted to the cognitive parameters immedi-
ately. With our method, the reward weight inference process took 
only four hours per task instruction. 

7.4.3 Fited reward weights. Our estimated reward weights can 
provide a plausible explanation for the change in the participants’ 
behavioral strategy according to the given task instructions. Follow-
ing the results in Figure 13, we can interpret that the participants 
decreased their intrinsic compensation for a successful click (i.e., 
lower |wsuccess |) and increased their intrinsic penalty according to 
the time spent (i.e., higher |wtime |), when receiving the Speed task 
instruction compared to the Accuracy task instruction. In addition, 
the magnitude of wefort was decreased, which indicates that partic-
ipants were willing to execute more motor efort to increase their 
speed. These changes in reward weights matched with the partici-
pants’ less accurate but faster task performance in the Speed task 
instruction (Figure 9). In the Equal task instruction, all three reward 
weights were ftted in the middle between the Accuracy and Speed 
task instructions. We conclude that our method can reasonably 
estimate the participants’ intrinsic reward formulation, in that it 
provides a plausible explanation for participants’ behaviors at the 
diferent levels of speed–accuracy trade-of. In Study 3, the ftted 
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Figure 12: Mean prediction horizon over normalized time of Mrew (top) and individually trained models (botom). We investi-
gated the changes in prediction horizon with variations in the absolute value of each reward weight (orange: low, blue: middle, 
green: high). Each column represents the varying reward weight (lef: wsuccess , center: wefort , right: wtime). Each line (mean pre-
diction horizon over time) was obtained by averaging the results from simulations of 9,000 trials. 

Figure 13: Results of the reward weights ftted for each task 
instruction in Study 2. The absolute value of each weight 
is shown; wsuccess is positive (compensation); wefort and wtime 
are negative (penalty). wfail was set to −1. 

reward formulations are used to train a simulation model that gen-
eralizes to diferent cognitive parameters of individual participants. 

7.4.4 Inverse reinforcement learning. Inverse RL algorithms (e.g., 
[48, 86]) may be considered another possible approach to infer users’ 

reward formulation. Inverse RL infers the reward formulation of 
expert agents based on their demonstrations. However, as argued by 
Kangasrääsiö et al. [34], the previous inverse RL algorithms cannot 
be readily used in user simulators in the feld of HCI. This is because 
the methods are usually required to observe the environmental 
states and actions of the expert agents. In user simulator cases, the 
states and actions often refer to the inherent decision processes 
of humans, which are not observable. For example, in our point-
and-click case, we can access the cursor trajectories performed 
by participants; however, we cannot identify the actual velocity 
and position of the target perceived (task state) or the prediction 
horizon of the motor plan set by the participants (action). Instead, 
we demonstrated that simulation-based inference methods (e.g., 
BOLFI) can be a suitable solution. Because the methods operate 
based on the evaluation of the discrepancy between the observable 
behaviors (e.g., cursor trajectory or task performance) of real and 
simulated users, the inference is available without requiring access 
to a user’s inherent decision process. 

8 STUDY 3: INFERRING COGNITIVE 
PARAMETERS 

In Study 3, we infer the cognitive parameters (σv , nv , and cσ ) of 
each of the 20 participants using the proposed framework in Sec-
tion 3. Accordingly, we implement Mcog , a generalized simulation 
model over cognitive parameters, equipped with an action policy 
based on our modulated Q-network. Mcog uses the cognitive pa-
rameters as the targeted free parameters to generalize, whereas 
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Figure 14: The structure of the policy model of the general-
ized simulation model over cognitive parameters (Mcog ). 

Mrew in Study 2 sets the reward weights as the targeted free pa-
rameters. We verify the generalization performance of the trained 
Mcog , along with the individual-level inference performance. 

8.1 Model Training 
8.1.1 Policy model architecture. We implemented the policy model 
of Mcog based on our modulated Q-network (Figure 14). The mod-
ulated Q-network receives the target cognitive parameters (σv , nv , 
and cσ ) as auxiliary inputs along with the task state, and predicts 
Q-values. The primary Q-network consisted of three FC layers. The 
frst two layers consisted of 64 hidden units with ReLU activation. 
The feature size of the last layer was set as our action dimension 
(=50). For the modulation method, we used feature-level concatena-
tion, which empirically exhibited better modulation performance 
than the FiLM method in our setting. In addition, better learning 
performance was exhibited by skipping a secondary encoder net-
work and directly concatenating the cognitive parameter vector to 
the hidden states of the primary Q-network. We used normalized 
values (between −1 and 1) of each cognitive parameter as inputs to 
the secondary encoder network. 

8.1.2 Training details. We frst defned an appropriate range of 
each cognitive parameter for generalization (the upper and lower 
bounds of each parameter that Mcog can simulate). The range was 
set according to the mean and standard deviation of the participants’ 
baseline value distribution measured in Study 1. The cognitive pa-
rameters have positive values, and they commonly show a skewed 
distribution towards zero. Here, if we set the range according to the 
common three-sigma bounds in the linear scale, the lower bound is 
likely to be below zero, which is not realistic and makes the training 
difcult. Therefore, we set the upper and lower bounds at the same 
distance on a logarithmic scale from participants’ average values. 
The skewness of the distribution was not evident on a logarithmic 
scale. The distance to each bound from the average value was deter-
mined as the upper three-sigma value on a linear scale. Accordingly, 
the defned ranges of the three targeted cognitive parameters were 
as follows: [0.069, 0.415] for σv , [0.145, 0.413] for nv , and [0.055, 
0.400] for cσ . 

Based on the three ftted reward formulations (in Study 2) for 
the three task instructions, we trained three separate Mcog corre-
sponding to each task instruction. We applied double DQN [74], a 
DQN family known to exhibit more stable learning than DQN by 
preventing a Q-network from overestimating Q-values. The major 

diference between the two algorithms is the method of calculating 
the TD error; therefore, we could apply the training method in 
Section 3.2.2, without further modifcation. Other than the three 
target cognitive parameters (σv , nv , and cσ ), the remaining cogni-
tive parameters (cµ , ν , and δ ) of the simulated user were set to the 
average values measured in Study 1 (except for np , which maintains 
a linear relationship with nv ). We trained the model using 1.5M 
training steps (approximately 2–3 days). For the remainder, the 
same hyperparameters were used as in Section 7.1.2. 

8.2 Inference 
The BOLFI was conducted individually for each observed behavioral 
data of the 20 participants. For the inference, we employed 900 trials 
of behavioral data from each participant, consisting of 300 trials 
for each task instruction. Accordingly, 900 trials under the same 
task conditions were simulated for each sample acquisition process. 
Three separate Mcog learned for each task instruction were used 
to simulate the corresponding 300 trials each. 

The targeted cognitive parameters infuence diferent stages of a 
user’s point-and-behavior: σv (visual perception), nv (cursor move-
ment), and cσ (estimation of click timing). Therefore, to properly 
infer all the cognitive parameters, it is reasonable to devise a dis-
crepancy function that considers the full cursor trajectory that the 
participant exhibits until a click. We defned the discrepancy func-
tion of observed and simulated data as 

Í 
trials(dsuccess + b × dtraj )

where dsuccess represents the discrepancy for click results, that is, 1 
if the click results (success or failure) of the observed and simulated 
trials do not match, otherwise 0; dtraj represents the discrepancy 
for trajectory, that is, MSE of the cursor positions on the observed 
and simulated trajectories at 0.05 s intervals; and b is the coefcient 
that balances the two discrepancy terms. 

Because we observed a high correlation between σv and cσ in 
Study 1, we refected this relationship in the inference process. 
Accordingly, we obtained a linear function ftted by the baseline 
values of σv and cσ (cσ = 0.497 × σv + 0.053). During the inference 
process, we assumed that cσ is in the range of ± 1 standard deviation 
(=0.084) from the predicted cσ value by the linear function for a 
given σv . Accordingly, BOLFI determined the following three values 
within the corresponding ranges: (1) σv (ranging from 0.069 to 0.415, 
as defned in Section 8.1.2), (2) nv (ranging from 0.145 to 0.413), and 
(3) the diference between cσ and the predicted cσ using the linear 
function and the inferred σv (ranging from −0.084 to 0.084). 

The inference of each participant’s cognitive parameters was 
performed using the 100 sample acquisition processes of BOLFI. 
Approximately 1.5 h were spent to infer the cognitive parameters 
of each individual user; 30 h of CPU time was spent to infer the 
cognitive parameters of all 20 participants. 

8.3 Evaluation and Results 
8.3.1 Generalization performance. Similarly, we evaluated the gen-
eralization performance of the trained Mcog as in Study 2. We 
compared Mcog and individually trained models with given fxed 
sets of cognitive parameters in two aspects: (1) the simulated task 
performance and (2) the prediction horizon (Th ) within a trial. Seven 
fxed sets of cognitive parameters were used; one set had the aver-
age values for all three target parameters (σv , nv , and cσ ); the other 
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Figure 15: Simulated point-and-click performance (lef: suc-
cess rate, right: completion time) of the individually trained 
models (x-axis) and our Mcog (y-axis). The simulated results 
of the two are compared under 21 diferent settings (3 task 
instructions × 7 cognitive parameter sets). Linear regression 
results are presented as solid lines along with the bands of 
95% confdence interval. 

six sets had one of the three parameters high (the two-third point 
from the mean to the upper bound) or low (the two-third point to 
the lower bound). Because we implemented Mcog for each of the 
three task instructions, 21 models (3 task instructions × 7 cognitive 
parameter sets) were individually trained. For the comparison, we 
simulated 12,000 trials for both the individually trained models and 
Mcog , under the same initial conditions. 

As shown in Figure 15, our model (Mcog) successfully repro-
duced the task performance of the individually trained models with 
high coefcients of determination (success rate: R2=0.98, comple-
tion time: R2=0.98). Figure 16 exhibits the change of Th in a trial 
according to the variations in each cognitive parameter value, for 
the individually trained cases and Mcog , respectively. It is observed 
that Mcog exhibits very similar results to the Th change of the indi-
vidually trained models. For example, the individually trained cases 
confrmed that the simulated user’s Th showed large variations 
according to the change in σv compared to the other two cognitive 
parameters, and it was reproduced by Mcog . 

8.3.2 Inference performance. Our inference performance was eval-
uated based on the baseline cognitive parameters of each individual 
user measured in Study 1. Figure 17 shows the correlation between 
the inferred cognitive parameters of each individual user and the 
baseline value of that user. The results show that our method pre-
dicts σv and cσ of individual users with a moderate level of coef-
fcient of determination (R2=0.50 for σv , R2=0.62 for cσ ). For the 
motor noise nv , a sufcient correlation between the predicted and 
baseline values was not obtained (R2=0.01). 

8.4 Discussion 
In Study 3, we validated our proposed method of implementing a 
generalized model Mcog over variations in cognitive parameters. 
With the trained Mcog , we reasonably inferred two cognitive pa-
rameters (σv and cσ ) from an individual participant’s observed 
behavior. Such inference performance was achieved based on the 
simulation model (Mcog), which was trained only in the virtual RL 
environment (i.e., in silico). Mcog was not provided any information 

on the relationships between the baseline cognitive parameters and 
behavioral data of the participants during the training period. 

8.4.1 Generalization performance. The trained Mcog exhibited ex-
cellent generalization performance, successfully approximating 
individually trained models with diferent sets of cognitive parame-
ters. In particular, Mcog achieved even better similarity to the sim-
ulated performance of the individually trained models (Figure 15), 
than Mrew in Study 2 (Figure 11). The variations in cognitive pa-
rameters (in Study 3) infuence the operation of each sub-module 
within Mcog ; for example, σv is involved in the visual perception 
module (Table 1). Conversely, the variations in reward weights 
(in Study 2) do not infuence the sub-modules within Mrew . Ac-
cordingly, the simulated performances of Mcog in Figure 15 were 
actually infuenced by not only the adapted action policy but also 
the changed operation of the sub-modules. That is, the efect of 
the action policy on the simulated task performance in the case of 
Mcog was less than that of Mrew ; therefore, the better similarity 
could be observed in Figure 15. 

Meanwhile, the simulated user’s Th is determined solely by the 
action policy; therefore, the comparison of Th can demonstrate 
whether the action policy was successfully adapted. We confrmed 
that both Mrew and Mcog faithfully reproduced the trend of Th of 
the individually trained models (Figure 12 and Figure 16). 

8.4.2 Efect of cognitive parameter variation. As shown in Figure 16, 
we can investigate the efect of the cognitive parameter variations 
on the simulated behavior using our generalized simulation model. 
Mcog confrmed a clear change in the trend of simulated user’s Th 
according to the variations in σv . Higher σv led to a longer Th over 
the entire trial. Do et al. [19] explained that the simulated user takes 
a strategy to increase Th to wait for the target bouncing of and 
reduce their movement efort when the given trial is perceived to be 
difcult (target is small or moves fast). Similarly, we can interpret 
that the simulated user with a higher σv takes the strategy of 
waiting more frequently and keeping a longer Th . 

The other two cognitive parameters (cσ and nv ) were found by 
the generalized model Mcog to have less efect on the overall trend 
of Th , compared to σv . It is expected that cσ infuences the behavior 
of the simulated user only at the end of each trial because cσ is 
involved only in a user’s click timing estimation, which is the fnal 
step of a trial. In Figure 16, the simulated user with a lower cσ in 
both Mcog and individually trained cases rapidly decreased Th at 
the end of the trial. In the case of nv , nv may not be a factor that 
infuences the simulated user’s prediction horizon; or the range of 
nv measured from the participants may not be sufciently large to 
lead to a diference in the action policy. 

8.4.3 Computational eficiency. Simulation-based inference at the 
individual level was almost infeasible in previous studies, owing 
to the prohibitively high computational cost. However, with the 
enhanced time efciency of our proposed inference method, the 
individual-level inference for many users becomes practical for the 
frst time in user simulator studies. In Study 3, it took less than one 
minute for one sample acquisition (900 trials of simulation) during 
BOLFI, and the entire inference process per individual user took 
only 1.5 h. This is a tremendous reduction in the computational 
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Figure 16: Mean prediction horizon over normalized time of Mcog (top) and individually trained models (botom). We investi-
gated the changes in prediction horizon with variations in the value of each cognitive parameter (orange: low, blue: middle, 
green: high). Each column represents the varying cognitive parameter (lef: σv , center: nv , right: cσ ). Each line (mean prediction 
horizon over time) was obtained by averaging the results from simulations of 12,000 trials of the Accuracy task instruction. 

Figure 17: Baseline (x-axis) and our inferred (y-axis) values of each participant’s cognitive parameters (lef: σv , center: nv , right: 
cσ ). Linear regression results are presented as solid lines along with the bands of 95% confdence interval. 

cost, compared to the hundreds of hours required for the single 
inference in a previous study [34]. 

8.4.4 Inference range of cognitive parameters. The appropriateness 
of the set range can infuence inference performance. The range 
should be sufciently wide to contain potential candidates. How-
ever, if the range is set excessively wide, the parameter space to 
be searched through BOLFI increases (the number of samples re-
quired for inference increases), and the probability of inferring 
incorrect values increases because it is easy to encounter the local 

minimum problem during optimization. We defned the range of 
each cognitive parameter for inference based on baseline values 
collected from participants. In realistic inference scenarios where 
the baseline values cannot be acquired, the value ranges that have 
been empirically validated in previous studies can be used. 

8.4.5 Potential degrading factors for inference. Several potential 
factors can degrade inference performance. First, we assumed that 
all participants had the same reward formulation for each task in-
struction obtained in Study 2. However, each individual may have a 
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diferent intrinsic reward formulation. Furthermore, a participant’s 
reward formulation may change as they progress through point-
and-click trials. If the user-independent and time-invariant reward 
formulation is assumed as in this study, the actual diference in 
reward formulation may not be refected in the simulated behavior. 

Second, we assumed that the cognitive parameters measured 
through the cognitive experiments in Study 1 were transferred to 
point-and-click tasks while maintaining their values. However, in 
reality, the values of the cognitive parameters may change as the 
target task changes. There can also be variations depending on 
the user. This may lead to discrepancies between the inferred and 
measured baseline values of the cognitive parameters. 

Third, the point-and-click model [19] may not perfectly repro-
duce the cursor trajectory in reality although the model is known to 
faithfully reproduce the user’s task performance. In this study, we 
used the discrepancy between the the observed and simulated cur-
sor trajectories for inference. More considerations than the current 
simulation model may be needed to accurately describe user behav-
ior at the trajectory level. For example, in consecutive trials, the user 
can use a strategy of preparing the next trial whenever each trial 
ends (e.g., moving the cursor to the neutral position); however, the 
current simulation model does not consider this preparation pro-
cess. In addition, participants often exhibited suboptimal behaviors 
that could not be explained by the simulation model (e.g., modifying 
their mouse grips during a trial). Such discrepancies between the 
simulation model and the user’s behavioral characteristics lead to 
a difcult situation for precise inference. 

Furthermore, we assumed that the point-and-click model had 
the same reproducibility over a defned range of free parameter 
values. In the original paper [19], the authors verifed the model’s 
reproducibility in the case when setting the free parameters accord-
ing to the typical values reported in previous studies; however, it 
has not been validated that the reproducibility remains the same 
over a wide range of parameter values. As the problem of needing 
a certain upper bound of σv was discovered (Section 6.2.2), the 
precision of the simulation may decrease as the determined free 
parameters become far from the typical values, and this may lead 
to another potential bias that degrades inference performance. 

Finally, as a potential reason for the unsatisfactory inference of 
motor noise (nv ), nv may not cause a signifcant diference in the 
point-and-click behaviors between users; therefore, it is difcult to 
infer nv based on the observations of user behaviors. This explana-
tion can be supported by the observation from real users in Study 
1, in that we could not fnd a signifcant correlation between the 
measured nv and the participant’s task performance. In addition, 
as shown in Figure 16, we confrmed that the change in the motor 
noise did not signifcantly infuence the action policy of the sim-
ulation models. This result matches with the previous study [19], 
which conducted an ablation study of the point-and-click model 
and showed that the efect of motor noise on the simulated behavior 
was less signifcant than that of visual perception noise. 

9 CONCLUSION AND FUTURE WORK 
In this study, we proposed and validated an implementation method 
for a generalized simulation model that can signifcantly reduce 
the computational cost of the inverse modeling of user simulators. 

Contrary to the previous approaches that required iterative RL 
processes for every new free parameter, our method enabled the 
simulated user’s policy to immediately adapt to given free param-
eters without additional optimization; therefore, the efciency of 
inverse modeling can be signifcantly improved (e.g., hundreds or 
thousands of hours to only a few hours per single inference). 

We verifed the proposed method by applying it to the latest 
point-and-click simulation model. We inferred the intrinsic reward 
settings of participants from their point-and-click behaviors; that 
is, we can now plausibly explain the changes in their behavioral 
strategies under diferent levels of speed–accuracy trade-of. We 
also inferred each participant’s cognitive parameters (visual percep-
tion noise and click precision) involved in their cognitive processes 
related to point-and-click tasks. To our best knowledge, this study 
enables practical inference of the cognitive parameters of individual 
users based on a point-and-click simulation model for the frst time. 

There are several promising directions for future research. First, 
we independently trained the two types of generalized simulation 
models for the inference of reward weights and cognitive parame-
ters in this study, by assuming that all participants had the same 
reward formulation. Because of this simplifcation, the inference 
performance may be degraded. However, if the simulation model 
on both reward weights and cognitive parameters can be gener-
alized, it becomes possible to simultaneously infer an individual 
user’s intrinsic reward settings and cognitive parameters from the 
observed user behaviors without simplifcation. This simultaneous 
inference of the reward weights and cognitive parameters is a chal-
lenging problem because as the number of free parameters that 
a model needs to generalize increases, the required training costs 
(e.g., time and computational resources) and modulation capacity of 
a network increase as well. Thus, a network structure with a higher 
modulation capacity (e.g., hypernetworks [29]) can be considered; 
however, it may lead to unstable learning. 

Second, although our framework signifcantly enhanced the 
computational efciency of the inverse modeling of user simu-
lators, there was an inevitable time consumption for the iterative 
search of the simulation parameter space. Accordingly, the enabling 
of real-time inference of a user’s cognitive parameters is still an 
open research question. One possible approach is amortized infer-
ence [18, 55], which constructs a surrogate model that receives 
behavioral data and estimates the posterior of cognitive parameters. 
If the training of the surrogate model can be performed only with 
simulation models, real-time inference based on the observed user 
behaviors can become possible using the trained surrogate model. 

Finally, the applicability of our efcient inverse modeling ap-
proach to simulation models in other HCI tasks can be investigated. 
One research question that can arise when applying our approach 
to other HCI tasks is whether our modulated Q-network is also 
efective to implement simulation models in other MDP problems. 
The feature-level modulation technique has been validated in pre-
vious RL studies [1, 6, 76, 87]; however, it is still unclear how the 
presented structure works in higher-dimensional action and state 
space than that of point-and-click tasks; therefore, it would be valu-
able to verify its generalization ability. When dealing with such 
complex MDP problems, more computation is required to abstract 
the task state or free parameters; therefore, a deeper structure of 
the Q-network might be necessary. 
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If our method can enable practical inference of a user’s intrinsic 
rewards or cognitive characteristics in a wide range of HCI tasks, 
it is expected to obtain richer insights from the user’s behaviors 
and utilize them for various applications. For example, the inferred 
cognitive parameters of a user can be used as a basis for interface op-
timization or personalization. If the interface is adapted to the user’s 
cognitive characteristics (e.g., ability-based optimization [65]), the 
usability of the interface for each user can be improved. In addition, 
assuming that the user’s cognitive characteristics are retained and 
transferred to a related task [73], we can predict the same user’s 
performance on similar tasks. For example, in the gaming feld, the 
prediction of a player’s performance based on inferred cognitive 
characteristics can provide valuable insight for difculty design; 
it becomes possible to provide the most suitable difculty level to 
the player, such that the player can be fully immersed [17]. An 
efcient inverse modeling approach can also be extended to quickly 
grasp a user’s personal preferences or intentions. Here, a user’s in-
ferred preferences or predicted next action can be used to improve 
recommender systems. 
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