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Abstract. In an era where the volume of data drives the effectiveness
of self-supervised learning, the specificity and clarity of data seman-
tics play a crucial role in model training. Addressing this, we introduce
HYPerbolic Entailment filtering (HYPE), a novel methodology designed
to meticulously extract modality-wise meaningful and well-aligned data
from extensive, noisy image-text pair datasets. Our approach leverages
hyperbolic embeddings and the concept of entailment cones to evaluate
and filter out samples with meaningless or underspecified semantics, fo-
cusing on enhancing the specificity of each data sample. HYPE not only
demonstrates a significant improvement in filtering efficiency but also sets
a new state-of-the-art in the DataComp benchmark when combined with
existing filtering techniques. This breakthrough showcases the potential
of HYPE to refine the data selection process, thereby contributing to the
development of more accurate and efficient self-supervised learning mod-
els. Additionally, the image specificity ϵi can be independently applied
to induce an image-only dataset from an image-text or image-only data
pool for training image-only self-supervised models and showed superior
performance when compared to the dataset induced by CLIP score.

1 Introduction

Recent studies have shown that a machine learning model performance is highly
correlated to the training dataset scale and the dataset quality; carefully human-
validated high-quality training data leads to a better model performance than the
same size of noisy data [30, 37]. However, human-validated dataset construction
is labor-intensive, making its scale-up expensive and impractical. As an alter-
native, there have been attempts to scale up noisy data points until reaching
the performance garnered from carefully collected high-quality training datasets
[11, 33, 51]. However, this approach requires more than billion-scale data points
that introduces another challenges in computational costs and storage size. To
mitigate the problem, researchers have begun to study inexpensive automatic
data filtering approaches to the noisy billion-scale data points.

The large datasets being created today, except private in-house datasets
[54, 62, 74, 79], rely heavily on web-crawled documents by CommonCrawl. As
the scale of images and texts obtained from the web is tremendously large,
each dataset employs different heuristics for reducing the size of the dataset.
These heuristics include, for example, whether the text is a title from Wikipedia,
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Fig. 1: Example of HYPE filtering on the Datacomp small pool [20]. HYPE leverages
both uni-modal specificity (text specificity ϵt and image specificity ϵi) and cross-modal
similarity (CLIP similarity cos(θ) as in this figure or negative Lorentzian distance −dL
can be used instead) to effectively identify and eliminate misalignment and underspeci-
fication issues on noisy image-text pairs. Figures (a-c) show instances where image-text
pairs exhibit high alignment yet are flagged for exclusion due to insufficient specificity:
(b) demonstrates low image specificity ϵi, (c) illustrates low text specificity ϵt, and
(a) indicates low specificity in both aspects. Conversely, Figure (d) presents a scenario
with high ϵi and ϵt but low cos(θ), highlighting a misalignment between the image and
text, evidenced by the absence of an “elephant print”.

whether it is written in English, and whether the image resolution is large enough
[20, 53, 57, 58, 73]. Another rule-of-thumb is model-based filtering, usually based
on the pre-trained CLIP [53] model, which determines if the given image and
text are semantically aligned [20, 57, 58], or if the given image is similar to
high-quality images from human-validated datasets, such as ImageNet [20].

Although CLIP-based filtering helps verify the semantic alignment between
images and texts, we argue that alignment alone is insufficient for high-quality
data filtering. More specifically, we should consider specificity of each data point.
Here, we (informally) define alignment as whether a given image-text pair is suf-
ficiently similar and specificity as whether a given unimodal data point contains
sufficient information to be uniquely defined (i.e., specificity measures how each
data point has semantically overlapping with other data points). A more for-
mal definition will be described in Sec. 3.3. Figure 1 illustrates the concept of
alignment and specificity. In the figure, the website screenshot and the URI are
well-aligned, but the information of the screenshot and the URI are not suffi-
ciently enough to be uniquely defined. Unfortunately, as CLIP-based filtering
only considers alignment, it cannot filter out underspecified images and texts.

To consider both alignment and specificity, we employ the pre-trained CLIP
[53] and its hyperbolic embedding version, MERU [16]. By employing both align-
ment and specificity metrics, our data filtering, named HYPerbolic Entailment
filtering (HYPE), can successfully handle underspecified samples and misaligned
pairs at the same time. More specifically, we propose a novel specificity measure-
ment based on the property of hyperbolic embeddings, the image specificity ϵi
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and the text specificity ϵt. We employ four metrics for HYPE: the cosine similar-
ity (cos(θ)) between the two CLIP embeddings, the negative Lorentzian distance
(−dL) [40] between the two MERU embeddings, and the specificity measure of
each modality using the entailment cone defined by MERU: ϵi (how specific the
image is) and ϵt (how specific the text is). HYPE utilize all four metrics: ϵi, ϵt,
−dL, and cos(θ) for filtering, making sure that the samples like shown in Figure 1
are eliminated, which is not possible by alignment-only filtering. By considering
various aspects of data points rather than only alignment, HYPE is ranked in
the first place on the Datacomp filtering track [20] for small and medium scales
by combining with DFN [19]. Our contribution can be summarized as follows.

1. We propose HYPE, a novel method that enhances the training of CLIP mod-
els beyond what is possible with traditional CLIP-based filtering techniques
by leveraging uni-modal specificity along with cross-modal alignment.

2. HYPE can be effectively used independently or in conjunction with other
filtering methods. When combined, it achieves a new state-of-the-art in the
DataComp benchmark, indicating its ability to filter datasets using distinct
properties compared to other methods.

3. ϵi can be independently applied to induce a dataset for training image-only
self-supervised models, showing superior performance compared to alignment-
based filtering.

2 Background

2.1 Hyperbolic Embeddings

Despite the usefulness of Euclidean embeddings, they cannot capture additional
instance-wise information, such as specificity. In this paper, we employ hyper-
bolic embeddings to capture additional information for data filtering. A hyper-
bolic space maps data that needs to be close to many positives at the same time
(i.e., more generic data) into closer to the origin, while maps data with fewer
positive pairs (i.e., more specific data) into farther away from the origin [40, 49].
Conceptually, the distance from the origin corresponds to the uncertainty rep-
resented by Euclidean Gaussian embeddings [63]. Thus, hyperbolic embeddings
can naturally capture how the uncertainty of inputs caused by inherent noisy
image-text pairs [12]. Practical implementations of Rn hyperbolic spaces include
the Poincaré ball model [1, 2, 17, 18, 21, 22, 35, 49], which distorts the distances
in Rn, and the hyperboloid model (Lorentz model), which is defined as a sub-
manifold of Rn+1 [16, 38]. A recent study, MERU [16], has successfully extended
this concept to image-text contrastive models, showing better performance than
CLIP in cross-modal retrieval and illustrating interesting applications of image
traversal. In this paper, we focus on noisy pair filtering leveraging the specificity
we can gather from the hyperbolic model, which was not addressed in MERU,
and show the advantages of using hyperbolic CLIP as a filtering network. To be
self-contained, we will describe the details of hyperbolic embeddings and how
specificity can be measured by hyperbolic embeddings in Section 3.2.
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2.2 DataComp Benchmark

For recent years, several evaluation benchmark suites have been proposed to eval-
uate models on various modalities, including text [68, 69], images [78], video [42],
and multimodal models [60, 80]. These model-driven benchmarks include eval-
uation datasets and tasks, but they do not limit models and training datasets.
Namely, the three factors of the scaling law [28, 29, 30, 61] –the size of the
model, the amount of data, and the number of training steps– cannot be con-
trolled through the benchmarks. It makes fair quantitative comparisons between
different algorithms or methods difficult beyond the effect of scale. To address
this, DataComp [20] has been proposed as a data-driven, rather than model-
driven, benchmark where the size of the model and the number of training steps
(the number of samples seen) are controlled and fixed. The Datacomp evaluation
consists of 38 tasks, mainly grouped into four task groups: ImageNet, 6 ImageNet
distribution shifts [4, 26, 27, 55], 13 VTAB [78], and 3 retrievals [6, 43, 75]. The
main evaluation metric of DataComp is computed by the average score of these
tasks, and additional benchmarks from CLIP [53] and WILDS [36]. In this pa-
per, we consider the DataComp filtering track, a benchmark for evaluating
the effectiveness of filtering methods. There are four different scales of datasets
in terms of fixed model size, training budget, and the number of seen samples
(small, medium, large, and xlarge). For example, the number of seen samples
of small is 12.8M, growing 10 times for each scale (e.g ., large has 1.28B seen
samples). Therefore, for each filtering track, the training method, budget, and
the number of seen samples are fixed, but only the seen samples are changed.
We note that the training method is fixed as CLIP training and the evaluation
protocol is fixed as the average zero-shot score on the 38 tasks of Datacomp
evaluation suite. It is because CLIP demonstrates a better scaling trade-off than
other methods [37, 73], and there exist well-founded open software [11, 32] and
open datasets [7, 48, 57, 58] for the training.

3 Method

This section outlines the overview of HYPE filtering, the theoretical background,
and the practical implementation of hyperbolic embeddings, presenting HYPE
as an effective method for dataset filtering in image-text contrastive learning.

3.1 Overview of HYPE

While CLIP-based filtering captures alginment well, it cannot effectively measure
the specificity of each data point. More specifically, as CLIP is trained with
noisy-contrastive estimation [25, 50] using random samples as negative pairs,
CLIP enforces to make each embedding located to a more distinct subspace
rather than having semantic overlaps between each other. For example, consider
a photo of a dog and a cat together and captions “A dog”, “A cat”, and “A dog and
a cat” in Figure 2. In this case, as shown in Figure 2 (a), the best Euclidean space
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Fig. 2: Conceptual comparisons of Euclidean embeddings and hyperbolic embeddings.

mapping will map the dog and cat photo to the midpoint between the embedding
of ‘A dog’ and ‘A cat’, because the dog and cat photo should be matched with
both dog and cat embeddings. However, the actual semantic meaning is more
complex than the average of the two embeddings. As pointed out by Desai et al.
[16], it is because CLIP uses the same distance metric at every point.

Hyperbolic embedding, on the other hand, can capture more complex seman-
tics by letting each point have different distance metrics. As shown in Figure 2
(b), hyperbolic embedding space can represent more complex information than
Euclidean embedding space. Conceptually, a more generic data point (i.e., po-
tentially matched with more samples) will be mapped into a point close to the
center point in hyperbolic space. For example, the textual embeddings of “A
cat” and “A dog” are closer to the center (“Animals”) than that of “A dog and a
cat” and “Cats and rats”. Moreover, using the property of hyperbolic embedding
space, we can define an “entailment” of each modality, i.e., whether the given
data sample can be matched with the other data samples. For example, Figure 2
(b) also illustrates the projected view of the hyperbolic space. In the projected
view, we can observe that the “A dong and a cat” caption embedding is placed
where the “cones” of caption embeddings “A cat” and “A dog” (shown in purple
and red areas, respectively) are overlapped. In other words, by using the concept
of the “entailment cone”, we can define the entailment of the given input.

Using the entailment cones, we define the “entailment loss” Le(x,y) for the
given image-text pair that measures whether the image y is correctly placed on
the entailment cone of the corresponding text x. Then, we define the “specificity”
of each input by computing the average entailment loss on the dataset. The image
specificity ϵi is defined as the average entailment loss, i.e.,

∑
x

Le(x,y)
M , and the

text specificity ϵt is defined similarly,
∑

y
Le(x,y)

M . ϵi and ϵt measure whether
the learned hyperbolic embedding space describes the given input well. We will
provide a more rigorous mathematical definition in the latter section. Figure 3
shows examples of images and texts with low and high specificity values (i.e., ϵi
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Fig. 3: We show examples of low and high ϵi and ϵt from the 12.8M Datacomp small
pool, where each percentile group spanned with 20% intervals. Here, a higher value
denotes that the instance is more specific (see Section 3.3 for details of ϵi and ϵt). The
range absolute value and their percentile p(·) of ϵi and ϵt are also shown. For texts, the
lowest ϵt texts are empty sentences or the least specific texts that could fit any image,
such as “Picture”, while the higher ϵt texts are generally longer sentences that describe
some object in detail. For images, images with low ϵi are either background images
with no objects or with too many objects, while images with higher ϵi are so-called
iconic images, which contain a single object that can be described with precision.

and ϵt, respectively). As shown in the figure, samples with smaller specificities are
more generic and underspecified. For example, the low ϵi values of mobile phone
or tower images denote their abundant potential relative captions in the dataset.
Conversely, Dalmore whisky in the “Highest” category highlights the scarcity
of descriptive texts without directly mentioning “Dalmore”, underscoring the
metric’s effectiveness in distinguishing specificity. Similarly, the captions “pic”
and “Picture” have low ϵt values as they are vague to describe a specific image.

In this paper, we propose to use not only CLIP alignment score, cos(θ), but
the specificity scores ϵi and ϵt. Also, as the CLIP embedding space is not sufficient
to represent complex image-text representations (as shown in Figure 2), we use
the alignment score measured by our hyperbolic CLIP, −dL. Finally, following
the baseline DataComp filtering, we additionally employ the ImageNet clustering
filter cIN, which denotes whether the given image belongs to ImageNet classes.
Our HYPE score is defined as follows:

HYPEscore = ϵi + ϵt − dL + cos(θ) + cIN (1)

In the following subsections, we will provide the details of the hyperbolic
CLIP [16] and more formal theoretical explanations of the meaning of ϵi and ϵt.

3.2 Hyperbolic CLIP

In this subsection, we provide a brief introduction to hyperbolic embeddings and
its multimodal version, MERU [16]. Hyperbolic embeddings have been actively
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studied on diverse modalities, such as images [77] or text [65]. Recently, Desai
et al. [16] applied hyperbolic embeddings to image-text joint embedding space
based on CLIP, named MERU. MERU is based on the Lorentz model, which uses
the upper half of a two-sheeted hyperboloid in the n+ 1-dimensional Euclidean
space Rn+1 to represent the n-dimensional hyperbolic space Ln. The x ∈ Rn+1 =
[xspace, xtime] in this space consists of two components [46]: One is xspace ∈ Rn

in the n-dimensional space dimension and the other is xtime ∈ R in the one-
dimensional time axis. This hyperboloid is symmetric with respect to the time
axis and has a Lorentzian inner product ⟨x,y⟩L = ⟨xspace,yspace⟩ − xtime ytime,
which is different from the Euclidean inner product. From this inner product,
the Lorentzian norm is ∥x∥L =

√
|⟨x,x⟩L| is derived. Since the Lorentz model

is defined to have a constant curvature of −c at all points: Ln = {x ∈ Rn+1 :
⟨x,x⟩L = − 1/c , c > 0}, we can derive xtime from xspace:

xtime =
√

1/c + ∥xspace∥2 (2)

MERU is built upon the Lorentz model and the CLIP architecture. MERU
does not L2 normalize venc ∈ Rn, the embedding that passed the last linear
projection in CLIP. Instead, MERU uses vspace = venc to define v = [venc, 0] ∈
Rn+1 and uses it as a point in the tangent space on the hyperboloid origin
O = [0,

√
1/c] (this is because ⟨O,v⟩L = 0 holds). MERU multiplies v by a

learnable scalar α initialized as
√

1/n. The negative Lorentzian distance, which
we will use as a similarity for the contrastive learning is defined as:

−dL(x,y) = −
√

1/c · cosh−1(−c ⟨x,y⟩L) (3)

As −dL can only be calculated on a manifold, not the tangent space, we need to
map v in the tangent space to the manifold. Luckily, as MERU only deals with
the tangent space of the origin O, this exponential map can be simplified into:

xspace =
sinh(

√
c ∥vspace∥)√

c ∥vspace∥
vspace (4)

By applying the exponential map to text and image embeddings, MERU can
find the −dL between positive and negative pairs in a batch, which can be simply
used instead of the cosine similarity of CLIP’s InfoNCE loss to train the model.
MERU simplifies the exponential map by using the tangent space of the origin,
thus minimizing potential numerical instability in the model’s computation.

3.3 Entailment Cone and Specificity

Now, we describe how we can measure specificity using hyperbolic embeddings.
Note that −dL also can perform as a filtering metric as a better alignment
measure rather than the vanilla CLIP distance cos(θ). However, −dL can only
measure alignment between images and texts but cannot measure how each im-
age or text is specific. This paper proposes a new instance-wise filtering metric
named specificity based on the concept of entailment. The concept of entailment
has its roots in logic and linguistics, long before its incorporation into machine
learning [64, 66]. In logic, entailment is a fundamental relationship where the
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truth of one statement guarantees the truth of another. In natural language pro-
cessing (NLP), a number of tasks have been created to verify that the language
model can properly capture this entailment relationship (i.e., semantic contain-
ment and exclusion): RTE [3, 5, 14, 24], MNLI [70], WNLI [41], etc., and these
tasks form a significant part of the GLUE benchmark [68, 69]. Beyond NLP,
tasks have also been created in the vision-and-language domain, such as SNLI-
VE [71, 72], to evaluate cross-modal entailment relationships between images
and text. The concept of an entailment cone emerges when we consider how en-
tailment relationships can be represented in a vector space. The idea is that for
a given concept represented by a vector, there exists a cone in the vector space
within which all vectors that are semantically entailed by the original term fall.

“Animals”

“A cat”

Le = ext(x,y) - aper(x)Projection
view

“A cat”

Fig. 4: Visual exam-
ple of aper Eqn. 5,
ext Eqn. 6 and entail-
ment loss Eqn. 7.

While the implementation of entailment cones in the
vision-and-language context can be done through order
embedding [67], Desai et al. [16] borrows the concepts of
Ganea et al. [21] and Le et al. [38] to train MERU using
entailment loss, which is involved in the training of the
model. In the hyperboloid space drawn by MERU, an en-
tailment cone is defined as a half-aperture with K = 0.1:

aper(x) = sin−1

(
2K√

c ∥xspace∥

)
(5)

Desai et al. [16] empirically demonstrated that text al-
ways entails an image. This concept can be taken for
granted because text, with its symbolic representation, is
always less specific than an image with pixel-level speci-
ficity. Thus, entailment loss makes the model learn such that the image embed-
ding of a positive image-text pair falls within the cone of its paired text (See
Figure 2 (b) as an example). The acute angle that the image embedding y makes
with the text embedding x can be found following hyperbolic trigonometry:

ext(x,y) = cos−1

 ytime + xtime c ⟨x,y⟩L

∥xspace∥
√
(c ⟨x,y⟩L)2 − 1

 (6)

Entailment loss is then determined by the difference between this deviation and
the size of the cone:

Le(x,y) = max(0, ext(x,y)− aper(x)) (7)

The visual explanation of Eqn. 5, 6 and 7 is illustrated in Figure 4. The Le

alone still requires image-text pairs. To use this value independently to measure
uni-modal specificity, we first sorted all samples from the DataComp medium
in descending order of CLIP similarity, and then selected the top N samples.
We then measured the Le for each image and text MERU embedding in the
DataComp medium against the MERU embeddings of the opposite modality in
the N samples and averaged these values. We used the M images and M texts
with the highest average Le as our reference set: Si and St, respectively. We
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Table 1: DataComp statistics. We have fewer samples than the original release of
DataComp small (12.8M) and medium (128M) due to inaccessible URLs. We confirmed
that the overall metric statistics of the samples remain largely unchanged for both
scales. Hence, we expect that using these metrics as filtering will achieve almost similar
results even when the scale goes beyond DataComp medium. Also, ϵt is significantly
lower than ϵi, namely, text always entails an image empirically.

Dataset Size ϵt ϵi −dL cos(θ) cIN

DataComp Small 11.6M 0.211± 0.082 0.289± 0.030 −0.726± 0.053 0.208± 0.064 6.110± 4.875
DataComp Medium 115.6M 0.210± 0.082 0.289± 0.030 −0.726± 0.053 0.208± 0.064 5.957± 4.908

Table 2: ImageNet-1k [56] zero-shot classification accuracy (IN1K) and MS-COCO
[43] text-to-image (T2I) and image-to-text (I2T) retrieval recalls on Karpathy test
split [34] and mAP on ECCV Caption [13] performances of CLIP and MERU models.
Note that the results reported in Desai et al. [16] used COCO 2017 validation split
instead of Karpathy test split. The results marked with an asterisk (∗) are the official
checkpoints from [16], and the unmarked ones are the ones we reproduced. The best
scores are in bold and the second best scores are in underlined.

Model Method Dataset
Size

# Samples
Seen IN1K COCO T2I COCO I2T

R1 R5 R10 mAP R1 R5 R10 mAP

B/16 CLIP ∗ 12M 245M 37.9 15.4 34.3 44.4 18.5 21.2 43.4 54.1 10.3
MERU ∗ 12M 245M 37.5 15.1 33.8 44.8 18.6 21.2 43.0 53.9 10.0
MERU 27M 128M 42.3 24.6 49.0 60.8 28.8 37.9 63.4 75.0 18.3

L/16 CLIP ∗ 12M 245M 38.4 14.2 32.1 42.6 17.6 21.2 41.9 52.2 9.8
MERU ∗ 12M 245M 38.8 14.7 33.2 43.4 18.5 21.2 42.1 52.7 10.2

L/14 MERU 12M 128M 38.2 13.6 31.2 41.0 17.6 21.2 44.2 54.6 10.3
MERU 27M 256M 50.2 30.2 55.4 66.9 32.8 43.3 69.5 79.7 21.0

set N and M to 20,000 as the value of ϵ∗ converged when calculated over 3,000
samples. The relatively low variance of metrics shown in Table 1 shows that
the specificity values remain consistent across different reference sets, suggesting
that it is invariant to the choice of dataset and not subject to bias. Now, given
any image, we can calculate its Le with the M text reference set, and we define
this value as image specificity ϵi. Similarly, we can calculate the Le value for
text, and define this value as text specificity ϵt:

ϵt(x) =
∑
y∈Si

Le(x,y)/M and ϵi(y) =
∑
x∈St

Le(x,y)/M (8)

3.4 Hyperbolic Entailment Filtering (HYPE)

Here, we describe the details of HYPE. We first train a MERU model with
ViT-B/16 and ViT-L/14 backbones on CC3M [59] and CC12M [8] in addition
to RedCaps [15]. Both models were trained on 8 V100s with a batch size of
2048. The models were optimized using AdamW [44], with a weight decay of 0.2,
(β1, β2) = (0.9, 0.98), and a learning rate of 5× 10−4. After a warm-up of 4,000
steps, ViT-B/16 was trained for 62,500 steps and ViT-L/14 for 125,000 steps
using a cosine decay learn rate schedule. Our implementation is based on the
OpenCLIP codebase [32]. Training of ViT-B/16 and ViT-L/14 MERU models
took approximately 10 hours and 61 hours, respectively.
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Fig. 5: Comparisons with baseline filtering methods and HYPE. We show the
subsampled Datacomp training set from 10% to 40% and evaluate them across four
Datacomp benchmark task groups. Each model was trained four times with varied
seeds. 10% and 30% results are the same as Table 4.

Note that the original MERU by Desai et al. [16] was trained solely on the
RedCaps [15] dataset. We added more clean data points to allow better filtering
capability, as the findings of DFN [19] and our discussion in Sec. 4.1. We also
note that the original MERU uses ViT-B/16 and ViT-L/16 backbones with
their textual encoder having a hidden size of 512. Since DataComp [20] uses
ViT-B/16 and ViT-L/14 for its baseline CLIP filtering method, we retrained
MERU on ViT-B/16, which has a 512 textual encoder hidden size, and ViT-
L/14, which has a 768 textual encoder hidden size, with the expanded dataset.
The results of MERU re-training are shown in Table 2. Surprisingly, even when
all the training hyperparameters, including the batch size, were the same as in
the original MERU, and the training was done with fewer steps (ViT-B/16), the
zero-shot performance of the reproduced MERU model was significantly better
than that of the original MERU. All results in this paper are based on the
hyperbolic embeddings obtained by our reproduced ViT-L/14 MERU.

We extract ϵi, ϵt, and −dL for every sample in the target image-text dataset
using our MERU model. For each sample, we also compute and store the Im-
ageNet clustering-based image filter used by DataComp and the CLIP score
cos(θ) of the ViT-L/14 CLIP. The clustering-based filter cIN is quantified as a
value of 10 if included and 0 if not, enabling preferential use. Table 1 summarizes
the statistics for the datasets tested in this paper. The HYPEscore is obtained
by linearly combining all the metrics with equal weight as defined in Eqn. 1.

Note that the metrics used for HYPE have the same computation complex-
ity as the CLIP distance. On the other hand, a number of the existing filtering
methods need more complex computations, such as the OCR engine (T-MARS
[45]) and additional clustering operations (CIDS [76]). Also, we argue that our
method is data-efficient compared to the previous model-driven filtering meth-
ods (our method: 27M, CLIP: 400M, DFN [19]: 2B) Our method is simple yet
archives the first place in small and medium DataComp leaderboards.

3.5 Ablation study

In this subsection, we provide ablation studies of HYPE design choices. First,
we show that using our metric outperforms solely using CLIP similarity or solely
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using specificity in Figure 5. Across sample sizes from 10% to 40% and across
four Datacomp benchmark task groups, HYPE consistently outperformed each
metric alone. Note that the gaps can be small in 40% samples because they
share more samples, thus less filtering effect. In 10% or 20%, where filtering
works more sensitively, HYPE always outperforms the baseline methods with
large gaps. This demonstrates that, as suggested in Figure 1, each metric, when
used in isolation, is limited in its ability to filter out data that adversely affects
image-text contrastive learning.

Table 3: Ablation study
Method IN VTAB Ret Avg

HYPE 0.338 0.357 0.286 0.343
HYPE − cIN 0.322 0.369 0.273 0.349
HYPE − cIN − cos(θ) 0.320 0.358 0.278 0.345
cos(θ) only [20] 0.260 0.326 0.235 0.322
cos(θ) + cIN [20] 0.297 0.346 0.231 0.328

We also examined the effect of
each component of HYPE in Table 3.
Our findings confirm that while cIN
enhances IN zero-shot, omitting cIN
yielded superior average performance
(1st vs. 2nd rows). The results of re-
moving cos(θ) (3rd row) are inspiring:
our model is trained with 1/15 data points and 1/5 seen training samples than
OpenAI CLIP but performs better than the CLIP baseline (4th row). We also
found that there is no single weight combination for Eqn. 1 that performs best
for all datasets. In this paper, we set all weights as 1 (i.e., 1st row), considering
the importance of the ImageNet benchmark and the relatively low importance
of small datasets, such as SVHN in the VTAB benchmark.

4 Experiments

In this section, we will show and discuss the results of using HYPE for the
image-text contrastive learning benchmark DataComp’s small and medium, and
ϵi for image-only contrastive learning by itself. Before that, we will discuss the
methods we used as a baseline for filtering in image-text contrastive learning.

4.1 Comparison Methods

In this paper, “filtering” refers to the process of excluding samples from the train-
ing data, while “sampling” refers to how often each sample is used for training.
Here, we introduce the major baselines of the DataComp filtering benchmark.
The most simple baseline filters the dataset by language (e.g ., leaving only En-
glish text), text length (e.g ., more than two words or five characters), and image
size (e.g ., aspect ratio of 3 or less and shorter axis more than 200 pixels). There
are two methods that empirically perform well. One is image-based clustering,
which groups the CLIP embeddings 100K centroids and then filters the samples
in centroids based on whether one of the images in ImageNet is closest to the
centroid of the cluster to which each sample belongs. The other is CLIP score
filtering we explained before. Recently, three notable approaches have been pro-
posed for Datacomp medium scale: DFN [19], CIDS [76], and T-MARS [45].
Data Filtering Networks (DFN) [19] is a model-centric approach without
multi-step filtering; they directly train a network determines whether filtering
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Table 4: We have compared HYPE with concurrent works challenging the Datacomp
benchmark. Methods with an asterisk (∗) are our reproductions given their sample IDs
for a fair comparison, as we were able to download fewer samples than the original
models. HYPE on the Datacomp small scale reports values from the average of four
models trained with different seeds. The uniform column stands for whether or not
each method uses the given sample IDs with equal probability during training. The
best scores are in bold, and the second best scores are in underlined.
Method Datacomp Scale Sample Size Uniform ImageNet ImageNet Dist. Shift VTAB Retrieval Average

CLIP L/14 30% [20] Small 3.8M Yes 0.051 0.055 0.190 0.119 0.173
WS [31] Small 4.1M Yes 0.056 0.061 0.196 0.132 0.180

HYPE 10% Small 1.2M Yes 0.051 0.056 0.162 0.102 0.150
HYPE 20% Small 2.3M Yes 0.064 0.063 0.190 0.130 0.176
HYPE 30% Small 3.5M Yes 0.054 0.057 0.182 0.133 0.170

CLIP L/14 30% [20] Medium 38.0M Yes 0.273 0.230 0.338 0.251 0.328
WS [31] Medium 24.8M Yes 0.305 0.253 0.363 0.270 0.342
T-MARS [45] Medium 23.0M No 0.338 0.274 0.371 0.231 0.357
CIDS [76] ∗ Medium 21.3M No 0.326 0.262 0.372 0.258 0.365
DFN [19] ∗ Medium 17.1M Yes 0.376 0.300 0.384 0.284 0.372

HYPE 10% Medium 11.6M Yes 0.327 0.257 0.365 0.246 0.340
HYPE 20% Medium 23.1M Yes 0.338 0.269 0.357 0.286 0.343
HYPE 30% Medium 34.7M Yes 0.300 0.243 0.337 0.276 0.332
HYPE 10% + CIDS [76] ∗ Medium 18.9M No 0.346 0.276 0.390 0.264 0.373
HYPE 10% + DFN [19] ∗ Medium 21.5M No 0.382 0.303 0.393 0.306 0.379

out the given data. The authors showed that CLIP cosine similarity-based DFN
performs the best among the other possible variants, such as, autoencoder [23].
The DFN paper also observes that training DFN with high-quality training
samples (i.e., a proprietary dataset, such as HQITP-357M [19, 54]) is crucial for
better filtering, compared to low-quality and large-scale training samples. Note
that the best-performing DFN is trained on HQITP-357M, whose scale is already
beyond the DataComp medium of 128M, making it very resource-intensive.
Cluster-Importance-based Data Selection (CIDS) [76] uses the 38 Data-
comp evaluation datasets to filter out samples dissimilar to the target evaluation
datasets and then duplicates the samples with similar distributions for more
extensive training sampling. While this method does not require a significant
amount of additional computing resources, it has a notable drawback: the model
needs to know on which dataset the CLIP will be evaluated before filtering.
Text-Masking and Re-Scoring (T-MARS) [45] reveals that many samples
in noisy datasets, like DataComp’s dataset pool, are simple OCR samples (image-
text pairs that simply transcribe the text in the image). This helps CLIP focus
on learning visual semantics by retaining only those images in the data pool
that still have high CLIP scores after masking the text in the images. However,
removing all OCR-like samples would harm the performance of tasks like MNIST
[39], SVHN [47], and RenderedSST2 [53] in DataComp’s evaluation dataset;
therefore, they still require CLIP to read the text in the images.

4.2 Image-Text Contrastive Pre-training

Table 4 includes the DataComp filtering track results of the main competitors
(i.e., DFN [19], CIDS [76] and T-MARS [45]) and the ensemble filtering with
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weak supervision [31]. As mentioned in Table 1, we only use the subset of the of-
ficial DataComp due to the dissipated URLs (about 10% samples were lost). For
a fair comparison, we obtained the sample IDs used by the two best-performing
methods on DataComp medium: CIDS [76] and DFN [19], and reproduced the
model with only those belonging to our pool – denoted with asterisk (∗).

In the table, we observe that HYPE performs extremely well in retrieval
scores, e.g ., HYPE 20% Medium shows 0.286 retrieval, which outperforms all
the baselines. We believe that it is because hyperbolic embeddings significantly
improve retrieval performances compared to the CLIP embedding (as observed in
Table 2), making the filtered data samples by HYPE more suitable for retrieval
tasks. This is especially noteworthy given that DFN used 357M high-quality
proprietary image-text pairs while HYPE is achievable with a much smaller
27M publicly accessible dataset. Note that DataComp only contains 3 retrieval
task groups out of 38 tasks; therefore, if we add more retrieval tasks for the
evaluation benchmark, HYPE will achieve a higher average score than others.

Second, HYPE can be combined with the other methods. As our specificity
metric is single-modality filtering and orthogonal to cross-modality filtering, such
as CLIP filtering, all other baselines rely on, it can properly filter underspecified
examples as shown in Figure 1. This characteristic helps us to mark the first
rank in the DataComp small and medium track by combining HYPE with DFN.

HYPE B/16-256m
HYPE B/16-128m

HYPE L/14-256m

CC3M + CC12M + RedCaps (HYPE)

ViT-B/16

(DFN)

(DFN)

Steps
128M
256M

Fig. 6: Filtering network IN-ZS acc. vs. In-
duced networks IN-ZS acc. (overlaid on the
figure of the DFN paper [19])

Additionally, we trained two
more B/16 models with different
training seen samples, 128M and
256M, whose IN-ZS accuracies are
42.3% and 47.6%. With these mod-
els, we report their correlation to
DataComp medium’s IN-ZS accu-
racy as described in [19]. As shown
in Figure 6, a better-performing
MERU model consistently induces
a more effective filtering network,
evidenced by improved zero-shot
accuracy. This upward trend sug-
gests that further improvements in MERU could lead to even more effective
filtering, which is not observed in the downward trend of Euclidean CLIP.

4.3 Image-Only Contrastive Pre-training

As our specificity metric is an uni-modal metric, unlike the CLIP similarity, we
can apply our filtering method to uni-modal datasets. Specifically, we investigate
the image specificity metric (ϵi)-based filtering for image-only self-supervised
learning (SSL) methods, as previous works highlight the significance of iconic
images in SSL training [52]. Since ϵi can efficiently identify iconic images (as
shown in Figure 3), we can expect that ϵi-based filtering will lead to better SSL
performances. We filter out underspecified images from the DataComp medium
dataset and measure the SSL performances using two methods, SimCLR [9], and
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Table 5: ImageNet-1K linear probing classification accuracies of ViT-S. The table com-
pares cos(θ) and ϵi on inducing various size image-only datasets (DataComp Medium)
for image-only self-supervised learning methods: SimCLR [9] and MoCo-v3 [10].

Model Filtering Metric Dataset Size
0.13M 0.32M 0.64M 1.28M

SimCLR [9] cos(θ) 47.06 45.47 52.31 49.68
ϵi 53.30 50.89 57.49 54.55

MoCo-v3 [10] cos(θ) 39.00 45.00 51.10 53.40
ϵi 44.70 51.60 56.80 59.70

MoCo-v3 [10]. We also provide CLIP similarity cos(θ)-based filtering, recognized
for inducing well-aligned images from noisy datasets, based on image-caption
pairs in the DataComp medium dataset.

Table 5 shows the results from 1.28M images (comparable to ImageNet [56])
to 0.13M (10% of ImageNet). For the comparison, we use the established hy-
perparameters searched on ImageNet. Following the practice of the DataComp
filtering track, we keep the number of seen samples fixed for every dataset size,
i.e., we use more epochs for smaller dataset sizes. We report the linear probing
performances on the ImageNet validation set following the standard SSL evalu-
ation protocol. Table 5 reveals that ϵi consistently outperforms cos(θ) across all
dataset sizes and models. Note that MoCo-v3 trained with a dataset induced by
ϵi outperforms SimCLR trained with a dataset induced by cos(θ) for the most
of dataset sizes. This result shows that the lower-performing SSL method can
outperform the higher-performing ones by simply replacing the data.

5 Discussion and Future Work

We conclude this paper by discussing the limitations of our method and outlining
future research directions. A notable limitation is that our experiments did not
include the larger DataComp subsets, specifically the large and xlarge scales.
Considering that HYPE shows an increasing performance gap as the dataset size
grows—from small to medium—it is reasonable to hypothesize that HYPE might
demonstrate exceptional performance when applied to these larger datasets.

Furthermore, HYPE was designed with a hyperbolic CLIP size set to L/14,
aligning with Datacomp’s standards. However, there is a strong basis to believe
that employing a larger hyperbolic CLIP architecture could significantly enhance
performance metrics. Additionally, our research solely utilized ϵi to create an
image-only dataset. We posit that employing ϵt to generate a text dataset could
result in a visually meaningful text corpus. This new corpus could be instrumen-
tal in training a language model capable of rapidly adapting to visual inputs.
Finally, we recognize the potential for extensive ablation studies, especially re-
garding the coefficient used in merging metrics for HYPE, such in-depth analysis
could yield further insights into the filtering model’s behavior and performance,
thereby enhancing its overall efficacy.
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