Emergence of Text Readability in Vision Language Models
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Abstract

We investigate how the ability to recognize textual con-
tent within images emerges during the training of Vision-
Language Models (VLMs). Our analysis reveals a criti-
cal phenomenon: the ability to read textual information
in a given image (text readability) emerges abruptly after
substantial training iterations, in contrast to semantic con-
tent understanding which develops gradually from the early
stages of training. This delayed emergence may reflect how
contrastive learning tends to initially prioritize general se-
mantic understanding, with text-specific symbolic process-
ing developing later. Interestingly, the ability to match im-
ages with rendered text develops even slower, indicating a
deeper need for semantic integration. These findings high-
light the need for tailored training strategies to accelerate
robust text comprehension in VLMs, laying the groundwork
for future research on optimizing multimodal learning.

1. Introduction

Vision-Language Models (VLMs) have significantly im-
proved their ability to integrate visual and linguistic in-
formation [5-7, 14, 15, 22], achieving strong performance
in diverse tasks. Specifically, CLIP [22] and its vari-
ants [6, 7, 28] demonstrate the ability to recognize objects,
scenes, and texts within images [5, 20, 29], enabling appli-
cations such as scene-text recognition or document under-
standing [21, 31]. This progress highlights VLMs as pow-
erful tools for bridging the gap between images and text,
yet it also raises intriguing questions about the underlying
mechanisms driving these capabilities.

Despite these advances, the training dynamics behind
VLMs’ ability to process textual content within images re-
main underexplored. Recently, Lin et al. [17] identifies
the source of such ability as images containing captions in
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Figure 1. Emergence of text readability in VLMSs during training.
Our findings show that VLMs can suddenly learn to visually un-
derstand rendered text. Initially, the model struggles to recognize
rendered text inputs (early-stage retrieval rankings, left). How-
ever, after a certain “emerge point”, its ability to interpret rendered
text improves significantly (updated retrieval rankings, right). This
sharp increase in Rendered-Text Image-to-Text (RTImg-to-T, bot-
tom) occurs only after achieving a certain level of semantic under-
standing represented by ImageNet zero-shot accuracy.

large-scale web-crawled training data. However, Lin et al.
mainly focus on the negative impact of images containing
rendered text on semantic understanding of pure visual con-
tents. This leaves open questions about the learning trajec-
tories of how VLMs develop text readability and whether
this development aligns with their semantic understanding.

In this paper, we focus on the fext readability in VLMs,
e.g., can a VLM “read” the texts in an image? This can
be measured by a retrieval task where a query is an image
containing the text and the candidates are the corresponding
text (e.g., a rendered text caption such as the “Person stand-
ing in the library by the books” image and Cap A in Fig. 1).
If a model can visually understand textual information in
an image, the retrieval task can be easily solved. Our sys-
tematic study reveals an interesting insight regarding the
text readability in VLMs: unlike semantic content under-



standing, which develops gradually from the initial stages,
the ability to read text emerges abruptly after substantial
training. This delayed emergence may reflect how optimiz-
ing contrastive loss prioritizes semantic learning, while text
readability, requiring symbolic understanding, appears with
further refinement. Fig. | summarizes our findings.

Moreover, we show that the ability to match images with
rendered-text images emerges after additional training, lag-
ging behind the development of rendered-text image-to-text
(RTImg-to-T) matching. This underscores the complex in-
teractions of visual and textual features, as the model ini-
tially relies on superficial pattern recognition before gradu-
ally acquiring deeper semantic integration. By highlighting
this emergence, our work provides novel insights into the
design and interpretability of multimodal systems.

The rest of the paper is organized as follows. Section 2
discusses related works on emergent phenomena of foun-
dation models and text readability of VLMs. The details
of our approach and experimental findings are described in
Section 3. Finally, Section 4 concludes by summarizing our
contributions and proposing future research directions.

2. Related Work
2.1. Emergent Abilities of Foundation Models

Recent studies have explored emergent capabilities in large-
scale foundation models, encompassing both large language
models (LLMs) and vision-language models (VLMs). Re-
search has shown that LLMs exhibit abrupt improvements
in tasks like complex arithmetic as their scale increases,
suggesting a non-linear progression in ability [24, 27, 30].
For example, GPT models demonstrate proficiency in zero-
shot translation, calculation, and action planning without
specific training for these tasks [1, 3]. Recent findings
challenge previous assumptions, suggesting that achieving
low pre-training loss—rather than increasing model size
or computational power—may be the critical factor behind
these emergent abilities across various benchmarks [9].

In VLMs, a recent study observes that CLIP model ac-
quires the ability to use a red circle as a visual prompt
for region-specific focus, which is a skill absent in smaller
models, showing how scaling reveals new functionali-
ties [26]. This ability arises from web-crawled training data
with red circles and matching captions. Our research reveals
that text readability emerges as a distinct VLM capability,
similarly shaped by training data with text in images.

2.2. Text Readability in VLMs

Recent studies have investigated the text readability of
VLMs, uncovering a range of insights into their develop-
ment. Wang et al. [29] first demonstrated that multimodal
large language models, after large-scale pretraining, can
read text embedded in images. Research into CLIP revealed
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Figure 2. (T, 1, R) triplet example generated by FLUX.1 dev us-
ing the NoCaps dataset.

more intricate mechanisms. For instance, Materzyniska
et al. [20] show that the image encoder of CLIP can separate
word image spelling from natural scene meaning through
projection layer finetuning. Additionally, Gandelsman et al.
[12] identify specific attention heads specialized in recog-
nizing letter patterns. However, Lin et al. [17] highlight
a limitation known as “parrot bias,” where models merely
learn to recognize the patterns of visible text in images, po-
tentially missing deeper visual understanding. Our study
explores the temporal dynamics of text-reading develop-
ment in VLMs, examining its emergence during training to
offer a fresh perspective on their evolution.

3. Method and Experimental Results

3.1. Dataset Construction

Our goal is to systematically investigate the emergence of
text readability in VLMs. To achieve this, we require
triplets consisting of (a) a text description 7', (b) its cor-
responding natural image I, and (c) an image R with the
visually rendered text of 7" — an example is shown in Fig. 2.
In this subsection, we introduce how we construct these
(T,I,R) triplets. Our comprehensive evaluation dataset
comprises 3,000 high-quality triplets.

We generated these samples by applying a diffusion-
based text-to-image pipeline to create images based on cap-
tions from the NoCaps dataset [2], which provides a diverse
corpus of realistic image-caption pairs spanning multiple
domains. For the diffusion model, we employed FLUX.1
dev [16], a recent diffusion model recognized for its ex-
ceptional text rendering fidelity. To ensure dataset diversity
and robustness, we varied multiple rendering parameters,
including font style, text color, background color, and spa-
tial positioning of the text elements. This parametric vari-
ation allows for a more thorough evaluation of VLMs’ text
comprehension ability across different visual contexts.

During dataset curation, we applied a rigorous quality
control protocol to filter out samples where text was im-
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properly rendered or became illegible due to visual arti-
facts or poor contrast. This meticulous filtering process en-
sured that only high-fidelity examples remained in the fi-
nal dataset, resulting in 3,000 validated triplets suitable for
comprehensive analysis.

3.2. Evaluation Metrics and Protocol

We next explain how we quantitatively measure the text
readability in VLMSs. Our primary analysis uses a rendered-
text image-to-text retrieval metric (RTImg-to-T Recall@1),
which assesses the model’s ability to associate rendered-
text images with their corresponding raw texts. Models with
strong text recognition capabilities should achieve high re-
trieval performance on this task. Without this ability, its
performance should be near random. Additionally, to assess
deeper semantic understanding of rendered text, we employ
a rendered-text image-to-image retrieval metric (RTImg-to-
I Recall@1), detailed in Section 3.4. We also established
a “preference” criterion, evaluating if the models assign
higher similarity scores for rendered-text images over natu-
ral images when matched with the raw text.

We measure the rendered-text image-to-text retrieval
metric and preference on ViT-B/16 CLIP models trained on
the DataComp-1B dataset [11], a large-scale collection of
1.4 billion image-text pairs. We trained the models with
various amounts of seen samples and measured the evalua-
tion metrics during training. Notably, DataComp-1B likely

contains numerous image-caption pairs where captions are
rendered directly within the images. This is primarily be-
cause it is constructed from web-crawled data, which natu-
rally includes many rendered texts. Furthermore, as noted
by Lin et al. [17], the DataComp filtering process may
not effectively exclude “parroting captions”—captions that
merely replicate text embedded in the visual content. There-
fore, CLIP models trained on DataComp-1B are expected to
eventually develop text readability. Our primary goal is to
investigate when this ability emerges during training.

To investigate the impact of scale on model performance,
our experiments utilize three distinct training dataset sizes
(256M, 640M, and 1.28B seen samples). For each run, we
checkpoint 32 intermediate weights with uniform intervals
to measure the text readability during training. Each model
is trained on DataComp-1B with batch size of 16,384 using
the AdamW optimizer [19] by setting 5; = 0.9 and 35 =
0.95. During training, a random scaling (40% to 100%) and
random color jittering are applied for data augmentation.

3.3. Emergence of Text Readability

To investigate how text readability develops during train-
ing, we analyzed the performance of ViT-B/16 CLIP models
trained on DataComp-1B with varying sample sizes (256M,
640M, and 1.28B), as shown in Fig. 3. The figure plots
ImageNet zero-shot classification accuracies (solid lines)
and text readabilities (dashed lines), alongside preferences
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Figure 4. ImageNet zero-shot classification accuracy vs text read-
ability for CLIP models. OpenCLIP public checkpoints (red)
and Datacomp-1B checkpoints (blue) are distinguished by color.
The plot highlights a non-linear correlation, with text readability
emerging around 0.4 ImageNet zero-shot accuracy.

(dotted lines) of each model. Notably, text readability and
the preference for rendered text images emerge consistently
around 200 million samples, irrespective of the learning
schedule or sample size. Despite the abundant presence of
rendered captions in the training dataset and consistent im-
provements in ImageNet zero-shot accuracy, text readabil-
ity emerges later in training. This delayed emergence may
reflect how contrastive loss optimization tends to priori-
tize semantic learning, while symbolic representation learn-
ing—linked to text readability—appears to develop with
further loss optimization.

Building on our previous analysis, we further investi-
gated the relationship between text readability and semantic
understanding by evaluating 114 publicly available CLIP
models from the OpenCLIP repository [13]. For these
public models, alongside our trained models, we assessed
text readability and its correlation with semantic under-
standing. Semantic understanding was measured using Im-
ageNet zero-shot classification accuracy [23], a standard
metric for CLIP performance. Note that the public Open-
CLIP weights include diverse architectures (e.g., ViT-G [8],
ConvNext [18], SigLIP [32]) and pretraining datasets (e.g.,
LAION-2B [25], WebLi [4], DFN [10]), allowing for a
broader examination.

Fig. 4 illustrates this relationship, distinguishing Open-
CLIP models (red) from the Datacomp-1B-trained check-
points (blue) by color. From the results, we observed a
non-linear correlation between ImageNet zero-shot accu-
racy and text readability, with readability emerging abruptly
around an accuracy of 0.4 regardless of the model type. This
pattern holds consistently for Datacomp-1B-trained models
across different seen samples during training (256M, 640M,

1.28B), indicating that the abrupt emergence of text read-
ability is generalized to variations in training scale. This
observation aligns with our hypothesis that the contrastive
loss optimization process prioritizes semantic content un-
derstanding over symbolic representation learning, though
both capabilities eventually develop with sufficient training.

3.4. Semantic Understanding of Rendered Text

Thus far, our analysis has focused on RTImg-to-T match-
ing, which serves as an indicator of the model’s text read-
ability. However, this approach may reflect a naive pattern-
matching strategy as Lin et al. [17] claimed, raising the
question of whether the model can truly grasp the semantic
meaning of rendered text. If a model truly understands ren-
dered text and accurately embeds the meaning of the text in
its representation space, the visual embedding of rendered
text image (R), the textual embedding of the original cap-
tion (7)), and the embedding of its corresponding natural
image (/) should be closely aligned. Namely, we expect
that not only the RTImg-to-T ability emerges but also the
RTImg-to-I ability emerges similarly.

We report the RTImg-to-I Recall@1 in Fig. 5 along with
RTImg-to-T Recall@1. This comparison reveals two key
findings. First, RTImg-to-I recall is significantly lower
compared to RTImg-to-T recall (e.g., below 10% vs. above
70%). This finding may suggest that the emergence of the
RTImg-to-T ability could be a reliance on superficial pattern
recognition rather than deep semantic understanding.

Second, the RTImg-to-I matching ability emerges later
than the emergence of the RTImg-to-T matching ability.
We presume that this delay is likely because contrastive
learning primarily involves direct comparisons between im-
ages and texts, rather than between rendered-text images
and images—despite both being visual inputs. However,
this RTImg-to-I capability gradually improves with suffi-
cient training (e.g., achieving around 10% Recall@1 with
over 1B seen samples). Furthermore, we also observe that
if we use a stronger model (e.g., ViT-L/16), the RTImg-to-I
recall@1 is substantially improved (e.g., 20%). More de-
tails are in the next subsection.

Overall, we presume that the emergence of RTImg-to-
T Recall@1 would not solely originate from the truly se-
mantic and visual understanding of rendered text, but it
also could rely on a simple pattern matching of rendered
text (e.g., detecting a specific word, rather than understand-
ing the whole caption semantically). Developing a training
strategy to achieve both matching abilities (RTImg-to-T and
RTImg-to-I) will be an interesting future research direction.

3.5. Scaling Model Capacity with ViT-L/16

We extended our analysis to a larger ViT-L/16 backbone,
training a CLIP model on the DataComp-1B dataset. This
ViT-L/16 model used the same training configuration as
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Figure 6. Comparison of text readability and semantic understanding of rendered-text images for ViT-B/16 and ViT-L/16 models, plotted

against ImageNet zero shot accuracy and training loss.

its ViT-B/16 counterpart, trained with 1.28B seen samples.
Following the methodology outlined by Du et al. [9], we
also plotted the text readability and semantic understand-
ing of rendered-text images for both ViT-B/16 and ViT-L/16
against training loss in Fig. 6. The results indicate that the
pattern previously observed in the smaller model—where
text readability and semantic understanding of rendered text
emerge after the model grasps semantic understanding of
images—also holds for the larger ViT-L/16; and further-
more, a larger model exhibits stronger text readability.

4. Conclusion

In this paper, we have explored the emergence of textual
content recognition in Vision-Language Models (VLMs),
uncovering significant patterns in their training dynamics.

Our central finding is that the ability to read text (RTImg-
to-T) arises abruptly after extensive training, a stark contrast
to the steady development of general semantic understand-
ing. This delay likely reflects how contrastive learning pri-
oritizes broader visual-semantic features before symbolic
capacities such as text recognition. Models seem to first
prioritize general visual-semantic features before develop-
ing symbolic capacities like text recognition. The difficulty
of tasks like RTImg-to-I further indicates that deeply inte-
grating rendered text visually is a more advanced capabil-
ity. These insights emphasize the importance of tailoring
training approaches to foster not just text recognition but
genuine understanding in VLMs. We hope this study sets
the stage for future investigations into refining multimodal
learning strategies.
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