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Abstract: For high-dimensional data such as images, learning an encoder that can output a com-
pact yet informative representation is a key task on its own, in addition to facilitating subsequent
processing of data. We present a model that produces discrete infomax codes (DIMCO); we train a
probabilistic encoder that yields k-way d-dimensional codes associated with input data. Our model
maximizes the mutual information between codes and ground-truth class labels, with a regularization
which encourages entries of a codeword to be statistically independent. In this context, we show
that the infomax principle also justifies existing loss functions, such as cross-entropy as its special
cases. Our analysis also shows that using shorter codes reduces overfitting in the context of few-shot
classification, and our various experiments show this implicit task-level regularization effect of
DIMCO. Furthermore, we show that the codes learned by DIMCO are efficient in terms of both
memory and retrieval time compared to prior methods.

Keywords: infomax; discrete codes; representation learning; few-shot classification

1. Introduction

Metric learning and few-shot classification are two problem settings that test a model’s
ability to classify data from classes that were unseen during training. Such problems are also
commonly interpreted as testing meta-learning ability, since the process of constructing a
classifier with examples from new classes can be seen as learning. Many recent works [1–4]
tackled this problem by learning a continuous embedding (x̃ ∈ Rn) of datapoints. Such
models compare pairs of embeddings using, e.g., Euclidean distance to perform nearest
neighbor classification. However, it remains unclear whether such models effectively utilize
the entire space of Rn.

Information theory provides a framework for effectively asking such questions about
representation schemes. In particular, the information bottleneck principle [5,6] character-
izes the optimality of a representation. This principle states that the optimal representation
X̃ is one that maximally compresses the input X while also being predictive of labels Y.
From this viewpoint, we see that the previous methods which map data to Rn focus on
being predictive of labels Y without considering the compression of X.

The degree of compression of an embedding is the number of bits it reflects about
the original data. Note that for continuous embeddings, each of the n numbers in a n-
dimensional embedding requires 32 bits. It is unlikely that unconstrained optimization of
such embeddings use all of these 32n bits effectively. We propose to resolve this limitation
by instead using discrete embeddings and controlling the number of bits in each dimension
via hyperparameters. To this end, we propose a model that produces discrete infomax
codes (DIMCO) via an end-to-end learnable neural network encoder.

This work’s primary contributions are as follows. We usw mutual information as
an objective for learning embeddings, and propose an efficient method of estimating it
in the discrete case. We experimentally demonstrate that learned discrete embeddings
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are more memory and time-efficient compared to continuous embeddings. Our experi-
ments also show that using discrete embeddings help meta-generalization by acting as an
information bottleneck. We also provide theoretical support for this connection through
an information-theoretic probably approximately correct (PAC) bound that shows the
generalization properties of learned discrete codes.

This paper is organized as follows. We propose our model for learning discrete codes
in Section 2. We justify our loss function and also provide a generalization bound for our
setup in Section 3. We compare our method to related work in Section 4, and present
experimental results in Section 5. Finally, we conclude our paper in Section 6.

2. Discrete Infomax Codes (Dimco)

We present our model which produces discrete infomax codes (DIMCO). A deep neural
network is trained end-to-end to learn k-way d-dimensional discrete codes that maximally
preserve the information on labels. We outline the training procedure in Algorithm 1,
and we also illustrate the overall structure in the case of 4-way 3-dimensional codes
(k = 4, d = 3) in Figure 1.

Algorithm 1 DIMCO training procedure.

Initialize network parameters θ
repeat

Sample a batch {(xn, yn)}
Compute logits {ln

i,j} = f (xn; θ) via (1)
Compute probs {pn

i,j} = softmax({ln
i,j}) via (2)

Update θ to minimize loss L({pn
i,j}, {yn}) via (10)

until converged
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Figure 1. A graphical overview of discrete infomax codes (DIMCO). (a) Discrete codes are produced
by a probabilistic encoder that maps each datapoint to a distribution over k-way d-dimensional
discrete codes. The encoder is trained to maximize the mutual information between code distribution
and label distribution. (b) Given a query image, we compare it against a support set of discrete codes
and corresponding labels. Our similarity metric is the query’s log probability for each discrete code.

2.1. Learnable Discrete Codes

Suppose that we are given a set of labeled examples, which are realizations of random
variables (X, Y) ∼ p(x, y), where X is the continuous input, and its corresponding discrete
label is Y. Realizations of X and Y are denoted by x ∈ RD and y ∈ {1, . . . , c}. The codebook
X̃ serves as a compressed representation of X.

We constructed a probabilistic encoder p(x̃|x)—which is implemented by a deep
neural network—that maps an input x to a k-way d-dimensional code x̃ ∈ {1, 2, . . . , k}d.
That is, each entry of x̃ takes on one of k possible values, and the cardinality of X̃ is |X̃| = kd.
Special cases of this coding scheme include k-way class labels (d = 1), d-dimensional binary
codes (k = 2), and even fixed-length decimal integers (k = 10).
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We now describe our model which produces discrete infomax codes. A neural network
encoder f (x; θ) outputs k-dimensional categorical distributions, Cat(pi,1, . . . , pi,k). Here,
pi,j(x) represents the probability that output variable i takes on value j, consuming x as an
input, for i = 1, . . . , d and j = 1, . . . , k. The encoder takes x as an input to produce logits
li,j = f (x)i,j, which form a d× k matrix:

l1,1 l1,2 l1,3 . . . l1,k
l2,1 l2,2 l2,3 . . . l2,k

...
...

...
. . .

...
ld,1 ld,2 ld,3 . . . ld,k

. (1)

These logits undergo softmax functions to yield

pi,j =
exp(li,j)

∑k
j=1 exp(li,j)

. (2)

Each example x in the training set is assigned a codeword x̃ = [x̃1, . . . , x̃d]
>, each entry of

which is determined by one of k events that is most probable; i.e.,

x̃ =

[ x̃1︷ ︸︸ ︷
arg max

j
p1j, · · · ,

x̃d︷ ︸︸ ︷
arg max

j
pdj

]>
. (3)

While the stochastic encoder p(x̃|x) induces a soft partitioning of input data, codewords
assigned by the rule in (3) yield a hard partitioning of X.

2.2. Loss Function

The i-th symbol is assumed to be sampled from the resulting categorical distribution
Cat(pi1, . . . , pik). We denote the resulting distribution over codes as X̃ and a code as x̃.
Instead of sampling x̃ ∼ X̃ during training, we use a loss function that optimizes the
expected performance of the entire distribution X̃.

We train the encoder by maximizing the mutual information between the distributions
of codes X̃ and labels Y. The mutual information is a symmetric quantity that measures the
amount of information shared between two random variables. It is defined as

I(X̃; Y) = H(X̃)− H(X̃|Y). (4)

Since X̃ and Y are discrete, their mutual information is bounded from both above and
below as 0 ≤ I(X̃; Y) ≤ log |X̃| = d log k. To optimize the mutual information, the encoder
directly computes empirical estimates of the two terms on the right-hand side of (4). Note
that both terms consist of entropies of categorical distributions, which have the general
closed-form formula:

H(p1, . . . , pn) =
n

∑
i=1

pi log pi. (5)

Let pij be the empirical average of pij calculated using data points in a batch. Then, pij is an
empirical estimate of the marginal distribution p(x̃). We compute the empirical estimate of
H(X̃) by adding its entropy estimate for each dimension.

Ĥ(X̃) =
d

∑
i=1

H(pi1, . . . , pik). (6)
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We can also compute

Ĥ(X̃|Y) =
c

∑
y=1

p(Y = y)Ĥ(X̃|Y = y), (7)

where c is the number of classes. The marginal probability p(Y = y) is the frequency of
class y in the minibatch, and H(X̃|Y = y) can be computed by computing (6) using only
datapoints which belong to class y. We emphasize that such a closed-form estimation of
I(X̃; Y) is only possible because we are using discrete codes. If X̃ were instead a continuous
variable, we would only be able to maximize an approximation of I(X̃; Y) (e.g., Belghazi
et al. [7]).

We briefly examine the loss function (4) to see why maximizing it results in discrimi-
native X̃. Maximizing H(X̃) encourages the distribution of all codes to be as dispersed as
possible, and minimizing H(X̃|Y) encourages the average embedding of each class to be as
concentrated as possible. Thus, the overall loss I(X̃; Y) imposes a partitioning problem on
the model: it learns to split the entire probability space into regions with minimal overlap
between different classes. As this problem is intractable for the large models considered in
this work, we seek to find a local minima via stochastic gradient descent (SGD). We provide
a further analysis of this loss function in Section 3.1.

2.3. Similarity Measure

Suppose that all data points in the training set are assigned their codewords according
to the rule (3). Now we introduce how to compute a similarity between a query datapoint
x(q) and a support datapoint x(s) for information retrieval or few-shot classification, where
the superscripts (q), (s) stand for query and support, respectively. Denote by x̃(s) the
codeword associated with x(s), constructed by (3). For the test data x(q), the encoder yields
pi,j(x(q)) for i = 1, . . . , d and j = 1, . . . , k. As a similarity measure between x(q) and x(s), we
calculate the following log probability.

d

∑
i=1

log p
i,x̃(s)i

(x(q)). (8)

The probabilistic quantity (8) indicates that x(q) and x(s) become more similar when the
encoder’s output—when x(q) is provided—is well aligned with x̃(s).

We can view our similarity measure (8) as a probabilistic generalization of the Ham-
ming distance [8]. The Hamming distance quantifies the similarity between two strings
of equal length as the number of positions at which the corresponding symbols are equal.
As we have access to a distribution over codes, we use (8) to directly compute the log
probability of having the same symbol at each position.

We use (8) as a similarity metric for both few-shot classification and image retrieval.
We perform few-shot classification by computing a codeword for each class via (3) and
classifying each test image by choosing the class that has the highest value of (8). We
similarly perform image retrieval by mapping each support image to its most likely code (3)
and for each query image retrieving the support image that has the highest (8).

While we have described the operations in (3) and (8) for a single pair (x(q), x(s)), one
can easily parallelize our evaluation procedure, since it is an argmax followed by a sum.
Furthermore, x̃ typically requires little memory, as it consists of discrete values, allowing us
to compare against large support sets in parallel. Experiments in Section 5.4 investigate the
degree of DIMCO’s efficiency in terms of both time and memory.
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2.4. Regularizing by Enforcing Independence

One way of interpreting the code distribution X̃ is as a group of d separate code
distributions x̃1, . . . , x̃d. Note that the similarity measure described in (8) can be seen
as ensemble of the similarity measures of these d models. A classic result in ensemble
learning is that using more diverse learners increases ensemble performance [9]. In a similar
spirit, we used an optional regularizer which promotes pairwise independence between
each pair in these d codes. Using this regularizer stabilized training, especially in more
large-scale problems.

Specifically, we randomly sample pairs of indices i1, i2 from {1, . . . , d} during each
forward pass. Note that x̃i1 ⊗ x̃i2 and (x̃i1 , x̃i2) are both categorical distributions with sup-
port size k2, and that we can estimate the two different distributions within each batch. We
minimize their KL divergence to promote independence between these two distributions:

Lind = DKL(x̃i1 ⊗ x̃i2 ‖ x̃i1 , x̃i2). (9)

We compute (9) for a fixed number of random pairs of indices for each batch. The cost of
computing this regularization term is miniscule compared to that of other components
such as feeding data through the encoder.

Using this regularizer in conjunction with the learning objective (4) yields the following
regularized loss:

L = −I(X̃; Y) + λLind = −H(X̃) + H(X̃|Y) + λLind. (10)

We fix λ = 1 in all experiments, as we found that DIMCO’s performance was not particu-
larly sensitive to this hyperparameter. We emphasize that while this optional regularizer
stabilizes training, our learning objective is the mutual information I(X̃; Y) in (4).

2.5. Visualization of Codes

In Figure 2, we show images retrieved using our similarity measure (8). We trained a
DIMCO model (k = 16, d = 4) on the CIFAR100 dataset. We selected specific code locations
and plotted the top 10 test images according to our similarity measure. For example, the
top (leftmost) image for code (·, j2, ·, j4) would be computed as

arg max
n∈{1,...,N}

[
log p2,j2(x

n) + log p4,j4(x
n)
]
, (11)

where N is the number of test images.
We visualize two different combinations of codes in Figure 2. The two examples

show that using codewords together results in their respective semantic concepts being
combined: (man + fish = man holding fish), (round + warm color = orange). While we
visualized combinations of 2 codewords for clarity, DIMCO itself uses a combination of d
such codewords. The regularizer described in Section 2.4 further encourages each of these
d codewords to represent different concepts. The combinatorially many (kd) combinations
in which DIMCO can assemble such codewords gives DIMCO sufficient expressive power
to solve challenging tasks.
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(2,	2,	·,	·)

(2,	·,	·,	 ·)

(·,	2,	·,	 ·)

(·,	11,	6,	·)

(·,	11,	·,	·)

(·,	 ·,	6,	·)

Figure 2. Compositionality of codes in a DIMCO model (k = 16, d = 4) trained on the CIFAR-100
dataset. Each row shows the top 10 images that assign highest marginal probability to specific codes
(shown on left). Composed codewords retrieve images with combined semantic meaning, such as
man + fish = man holding fish. We additionally visualize all kd codewords in Appendix A.

3. Analysis
3.1. Is Mutual Information a Good Objective?

Our learning objective for DIMCO (4) is the mutual information between codes and
labels. In this subsection, we justify this choice by showing that many previous objectives
are closely related to mutual information. Due to space constraints, we only show high-level
connections here and provide a more detailed exposition in Appendix A.

3.1.1. Cross-Entropy

The de facto loss for classification is the cross-entropy loss, which is defined as

xent(Y, X) = −Ey∼Y,x∼X

[
log q(Ŷ = y|X̃(x))

]
, (12)

where Ŷ is the model’s prediction of Y. Using the observation that the final layer q(·) acts a
parameterized approximation of the true conditional distribution p(Y|X̃), we write this as

xent(Y, X) ≈ Ey∼Y,x∼X
[
− log p(y|x̃)

]
= −I(X̃; Y) + H(Y). (13)

The H(Y) term can be ignored since it is not affected by model parameters. Therefore,
minimizing cross-entropy is approximately equivalent to maximizing mutual information.
The two objectives become completely equivalent when the final linear layer q(·) perfectly
represents the conditional distribution q(y|x̃). Note that for discrete x̃, we cannot use a
linear layer to parameterize q(y|x̃), and therefore, cannot directly optimize the cross-entropy
loss. We can therefore view our loss as a necessary modification of the cross-entropy loss
for our setup of using discrete embeddings.

3.1.2. Contrastive Losses

Many metric learning methods [1,2,10–12] use a contrastive learning objective to
learn a continuous embedding (X̃). Such contrastive losses consist of (1) a positive term
that encourages an embedding to move closer to that of other relevant embeddings and
(2) a negative term that encourages it to move away from irrelevant embeddings. The
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positive term approximately minimizes log p(X̃|y), and the negative term as approximately
minimizes log p(X̃). Together, these terms have the combined effect of maximizing

E
[
log p(x̃|y)− log p(x̃)

]
= −H(X̃|Y) + H(X̃) = I(X̃; Y). (14)

We show such equivalences in detail in Appendix A.
In addition to these direct connections to previous loss functions, we show empirically

in Section 5.1 that the mutual information strongly correlates with both the top-1 accuracy
metric for classification and the Recall@1 metric for retrieval.

3.2. Does Using Discrete Codes Help Generalization?

In Section 1, we have provided motivation for the use of discrete codes through the
regularization effect of an information bottleneck. In this subsection, we theoretically
analyze whether learning discrete codes by maximizing mutual information leads to better
generalization. In particular, we study how the mutual information on the test set is affected
by the choice of input dataset structure and code hyperparameters k and d through a PAC
learning bound.

We analyze DIMCO’s characteristics at the level of minibatches. Following related
meta-learning works [13,14], we call each batch a “task”. We note that this is only a
difference in naming convention, and our analysis applies equally well to the metric
learning setup: we can view each batch consisting of support and query points as a task.

Define a task T to be a distribution over Z = X × Y . Let tasks T1, . . . , Tn be sam-
pled i.i.d. from a distribution of tasks τ. Each task T consists of a fixed-size dataset
DT = z1

T , . . . , zm
T = (x1

T , y1
T), . . . , (xm

T , ym
T ), which is a set of m i.i.d. samples from the data

distribution (zj
T ∼ T). Let θ be the parameters of DIMCO. Let X, Y, X̃ be the random

variables for data, labels, and codes, respectively. Recall that our objective is the expected
mutual information between labels and codes:

L(τ, θ) = −ET∼τ

[
I(X̃(XT , θ); YT)

]
. (15)

The loss that we actually optimize (Equations (6) and (7)) is the empirical loss:

L̂(T1:n, θ) = − 1
n

n

∑
i=1

Î(X̃(XTi , θ); YTi ). (16)

The following theorem bounds the difference between the expected loss L and the
empirical loss L̂.

Theorem 1. Let dΘ be the VC dimension of the encoder X̃(·). The following inequality holds with
high probability:

L(τ, θ)− L̂(T1:n, θ) ≤ O

√dΘ

n
log

n
dΘ

+ O

(
|X̃| log(m)√

m

)
+ O

(
|X̃||Y|

m

)
. (17)

Proof. We use VC dimension bounds and a finite sample bound for mutual information [15].
We defer a detailed statement and proof to Appendix B.

First note that all three terms in our generalization gap (A11) converge to zero as
n, m→ ∞. This shows that training a model by maximizing empirical mutual information,
as in Equations (6) and (7), generalizes perfectly in the limit of infinite data.

Theorem 1 also shows how the generalization gap is affected differently by dataset
size m and number of datasets n. A large n directly compensates for using a large backbone
(dΘ), and a large m compensates for using a large final representation (X̃). Put differently,
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to effectively learn from small datasets (m), one should use a small representation (X̃). The
number of datasets n is typically less of a problem because the number of different ways
to sample datasets is combinatorially large (e.g., n > 1010 for miniImagenet 5-way 1-shot
tasks). Recall that DIMCO has |X̃| = d log k, meaning that we can control the latter two
terms using our hyperparameters d, k. We have explained the use of discrete codes through
the information bottleneck effect of small codes X̃, and Theorem 1 confirms this intuition.

4. Related Work

Information bottleneck. DIMCO and Theorem 1 are both close in spirit to the infor-
mation bottleneck (IB) principle [5,6,16]. IB finds a set of compact representatives X̃ while
maintaining sufficient information about Y, minimizing the following objective function:

J (p(x̃|x)) = I(X̃; X)− βI(X̃; Y), (18)

subject to ∑x̃ p(x̃|x) = 1. Equivalently, it can be stated that one maximizes I(X̃; Y) while
simultaneously minimizing I(X̃; X). Similarly, our objective (15) is information maximiza-
tion I(X̃; Y), and our bound (A11) suggests that the representation capacity |X̃| should be
low for generalization. In the deterministic information bottleneck [17], I(X̃; X) is replaced
by H(X̃). These three approaches to generalization are related via the chain of inequalities
I(X̃; X) ≤ H(X̃) ≤ log |X̃|, which is tight in the limit of X̃ being imcompressible. For
any finite representation, i.e., |X̃| = N, the limit β → ∞ in (18) yields a hard partition-
ing of X into N disjoint sets. DIMCO uses the infomax principle to learn N = kd such
representatives, which are arranged by k-way d-dimensional discrete codes for compact
representation with sufficient information on Y.

Regularizing meta-learning. Previous meta-learning methods have restricted task-
specific learning by learning only a subset of the network [18], learning on a low-dimensional
latent space [19], learning on a meta-learned prior distribution of parameters [20], and
learning context vectors instead of model parameters [21]. Our analysis in Theorem 1 sug-
gests that reducing the expressive power of the task-specific learner has a meta-regularizing
effect, indirectly giving theoretical support for previous works that benefited from reducing
the expressive power of task-specific learners.

Discrete representations. Discrete representations have been thoroughly studied in
information theory [22]. Recent deep learning methods directly learn discrete representa-
tions by learning generative models with discrete latent variables [23–25] or maximizing
the mutual information between representation and data [26]. DIMCO is related to but
differs from these works, as it assumes a supervised meta-learning setting and performs
infomax using labels instead of data.

A standard approach to learning label-aware discrete codes is to first learn continuous
embeddings and then quantize it using an objective that maximally preserves its infor-
mation [27–29]. DIMCO can be seen as an end-to-end alternative to quantization which
directly learns discrete codes. Jeong and Song [30] similarly learns a sparse binary code in
an end-to-end fashion by solving a minimum cost flow problem with respect to labels. Their
method differs from DIMCO, which learns a dense discrete code by optimizing I(X̃; Y),
which we estimate with a closed-form formula.

Metric learning. The structure and loss function of DIMCO are closely related to
those of metric learning methods [1,11,12,31]. We show that the loss functions of these
methods can be seen as approximations of the mutual information (I(X̃; Y)) in Section 2.2,
and provide more in-depth exposition in Appendix A. While all of these previous methods
require a support/query split within each batch, DIMCO simply optimizes an information-
theoretic quantity of each batch, removing the need for such structured batch construction.
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Information theory and representation learning. Many works have applied
information-theoretic principles to unsupervised representation learning: to derive an
objective for GANs to learn disentangled features [32], to analyze the evidence lower
bound (ELBO) [33,34], and to directly learn representations [35–39]. Related also are pre-
vious methods that enforce independence within an embedding [40,41]. DIMCO is also
an information-theoretic representation learning method, but we instead assume a super-
vised learning setup where the representation must reflect ground-truth labels. We also
used previous results from information theory to prove a generalization bound for our
representation learning method.

5. Experiments

In our experiments, we used datasets with varying degrees of complexity: CIFAR10/
100 [42], miniImageNet [31], CUB200 [43], Cars196 [44], and ImageNet (ILSVRC-2012-CLS,
Deng et al. [45]). We used standard train/test splits for each dataset unless stated otherwise.
We also used various network architectures: 4-layer convnet [31] and ResNet12/20/50 [46,47].
We followed previously reported experimental setups as closely as possible, and provide
minor experiment details in Appendix C.

5.1. Correlation of Metrics

We have shown in Section 3.1 that the mutual information I(X̃; Y) is strongly connected
to previous loss functions for classification and retrieval. In this subsection, we show
experiments performed to verify whether I(X̃; Y) is a good metric that quantitatively shows
the quality of the representation X̃. We trained DIMCO on the miniImageNet dataset with
k = d = 64 for 20 epochs. We plot the pairwise correlations between five different metrics:
(5, 10, 20)-way 1-shot accuracy, Recall@1, and I(X̃; Y). The results in Figure 3 show that all
five metrics are very strongly correlated. We observed similar trends when training with
loss functions other than I(X̃; Y) as well; we show these experiments in Appendix C due to
space constraints.

5.2. Label-Aware Compression

We applied DIMCO to compressing feature vectors of trained classifier networks. We
obtained penultimate embeddings of ResNet20 networks each trained on CIFAR10 and
CIFAR100. The two networks had top-1 accuracies of 91.65 and 66.61, respectively. We
trained on embeddings for the train set of each dataset, and measured top-1 accuracy of the
test set using the training set as support. We compare DIMCO to product quantization (PQ,
Jegou et al. [28]), which similarly compresses a given embededing to a k-way d-dimensional
code. We compare the two methods in Table 1 with the same range of k, d hyperparameters.
We performed the same experiment on the larger ImageNet dataset with a ResNet50
network which had a top-1 accuracy of 76.00. We compare DIMCO to both adaptive scalar
quantization (SQ) and PQ in Table 2. We show extended experiments for all three datasets
in Appendix A.

The results in Tables 1 and 2 demonstrate that DIMCO consistently outperforms PQ,
and is especially efficient when d is low. Furthermore, the ImageNet experiment (Table 2)
shows that DIMCO even outperforms SQ, which has a much lower compression rate
compared to the embedding sizes we consider for DIMCO. These results are likely due to
DIMCO performing label-aware compression, where it compresses the embedding while tak-
ing the label into account, whereas PQ and SQ only compress the embeddings themselves.
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Figure 3. Pairwise correlations between MI = I(X; X̃) and previous metrics. Best viewed zoomed in.

Table 1. Top-1 accuracies under various compressed CIFAR-10/100 embeddings with size (k, d),
with best results for each setting in bold. The original embeddings were continuous 64-dimensional
embeddings (k ≈ 232, d = 64).

CIFAR-10 CIFAR-100

d = 4 d = 16 d = 4 d = 16

PQ k = 2 50.38 87.24 7.77 32.47
k = 4 86.86 90.92 18.78 52.02
k = 8 90.44 91.49 31.04 58.82
k = 16 91.02 91.52 43.16 61.00

DIMCO k = 2 64.43 88.85 10.03 33.46
(ours) k = 4 88.47 91.04 25.7 53.36

k = 8 91.29 91.45 46.22 58.84
k = 16 91.68 91.57 57.83 62.49
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Table 2. Top-1 accuracies and compression rates of ImageNet embeddings under various com-
pressed embedding sizes (k, d), with best results in bold. The compression rate is the ratio between
uncompressed and compressed sizes; it is calculated as 32·2048

d log k .

Method (k,d) Compression Rate Accuracy

SQ (2, 2048) 32 0.10
SQ (4, 2048) 16 0.28
SQ (8, 2048) 10 12.36
SQ (16, 2048) 8 57.80
PQ (2, 2) 32,768 0.21
PQ (4, 4) 8192 0.92
PQ (8, 8) 2730 11.91
PQ (16, 16) 1024 44.93

DIMCO (2, 2) 32,768 0.14
DIMCO (4, 4) 8192 2.68
DIMCO (8, 8) 2730 33.28
DIMCO (16, 16) 1024 63.64

5.3. Few-Shot Classification

We evaluated DIMCO’s few-shot classification performance on the miniImageNet
dataset. We compare our method against the following previous works: Snell et al. [3],
Vinyals et al. [31], Liu et al. [48], Ye et al. [49], Ravi and Larochelle [50], Sung et al. [51],
Bertinetto et al. [52], Lee et al. [53]. All methods use the standard four-layer convnet with
64 filters per layer. While some methods used more filters, we used 64 for a fair comparison.
We used the data augmentation scheme proposed by Lee et al. [53] and used balanced
batches of 100 images consisting of 10 different classes. We evaluated both 5-way 1-shot
and 5-way 5-shot learning, and report 95% confidence intervals of 1000 random episodes
on the test split.

Results are shown in Table 3, and we provide an extended table with an alternative
backbone in Appendix A. Figure 3 shows that DIMCO outperforms previous works on
the 5-way 1-shot benchmark. DIMCO’s 5-way 5-shot performance is relatively low, likely
because the similarity metric (Section 2.3) handles support datapoints individually instead
of aggregating them, similarly to Matching Nets [31]. Additionally, other methods are
explicitly trained to optimize 5-shot performance, whereas DIMCO’s training procedure is
the same regardless of task structure.

Table 3. Few-shot classification accuracies on the miniImageNet benchmark, with best results for
each setting in bold. † denotes transductive methods, which are more expressive by taking unlabeled
examples into account.

Method 5-Way 1-Shot 5-Way 5-Shot
† TPN 55.51 ± 0.86 69.86 ± 0.65
† FEAT 55.75 ± 0.20 72.17 ± 0.16

MetaLSTM 43.44 ± 0.77 60.60 ± 0.71
MatchingNet 43.56 ± 0.84 55.31 ± 0.73
ProtoNet 49.42 ± 0.78 68.20 ± 0.66
RelationNet 50.44 ± 0.82 65.32 ± 0.70
R2D2 51.2 ± 0.6 68.8 ± 0.1
MetaOptNet-SVM 52.87 ± 0.57 68.76 ± 0.48

DIMCO (64, 64) 47.33 ± 0.46 61.59 ± 0.52
DIMCO (64, 128) 53.29 ± 0.47 64.79 ± 0.57
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5.4. Image Retrieval

We conducted image retrieval experiments using two standard benchmark datasets:
CUB-200-2011 and Cars-196. As baselines, we used three widely adopted metric learning
methods: Binomial Deviance [54], Triplet loss [1], and Proxy-NCA [2]. The backbone for
all methods was a ResNet-50 network pretrained on the ImageNet dataset. We trained
DIMCO on various combinations of (p, d), and set the embedding dimension of the baseline
methods to 128. We measured the time per query for each method on a Xeon E5-2650 CPU
without any parallelization. We note that computing the retrieval time using a parallel
implementation would skew the results even more in favor of DIMCO, since DIMCO’s
evaluation is simply one memory access followed by a sum.

Results presented in Table 4 show that DIMCO outperforms all three baseline, and that
the compact code of DIMCO takes roughly an order of magnitude less memory, and requires
less query time as well. This experiment also demonstrates that discrete representations
can outperform modern methods that use continuous embeddings, even on this relatively
large-scale task. Additionally, this experiment shows that DIMCO can train using large
backbones without significantly overfitting.

Table 4. Image retrieval performance on CUB-200-2011 and Cars-196, measured by Recall@1, with
best results for each setting in bold. Memory is the number of bits that an embedding vector of each
image uses. Time is seconds taken to retrieve a single query from database (5924 and 8131 images for
CUB-200-2011 and Cars-196, respectively).

CUB-200-2011 Cars-196

Method (k,d) Memory [Bits] Recall@1 Time [s] Recall@1 Time [s]

Binomial Deviance (-, 128) 4096 57.25 16.37 72.53 21.86
Triplet (-, 128) 4096 56.80 16.37 73.79 21.86
Proxy-NCA (-, 128) 4096 56.19 16.37 75.94 21.86

DIMCO (ours)

(32, 32) 160 51.04 1.48 63.44 2.64
(64, 64) 384 55.78 2.85 72.06 6.01
(128, 128) 896 58.05 5.81 76.04 11.92
(256, 256) 2048 58.90 12.20 77.32 16.04

6. Discussion

We introduced DIMCO, a model that learns a discrete representation of data by directly
optimizing the mutual information with the label. To evaluate our initial intuition that
shorter representations generalize better between tasks, we provided generalization bounds
that get tighter as the representation gets shorter. Our experiments demonstrated that
DIMCO is effective at both compressing a continuous embedding, and also at learning a
discrete embedding from scratch in an end-to-end manner. The discrete embeddings of
DIMCO outperformed recent continuous feature extraction methods while also being more
efficient in terms of both memory and time. We believe the tradeoff between discrete and
continuous embeddings is an exciting area for future research.

DIMCO was motivated by concepts such as the minimum description length (MDL)
principle and the information bottleneck: compact task representations should have less
room to overfit. Interestingly, Yin et al. [55] reports that doing the opposite—regularizing
the task-general parameters—prevents meta-overfitting by discouraging the meta-learning
model from memorizing the given set of tasks. In future work, we will investigate the
common principle underlying these seemingly contradictory approaches for a fuller under-
standing of meta-generalization.
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Appendix A. Previous Loss Functions Are Approximations of Mutual Information

Appendix A.1. Cross-Entropy Loss

The cross-entropy loss has directly been used for few-shot classification [3,31].
Let q(y|x̃; φ) be a parameterized prediction of y given x̃, which tries to approximate

the true conditional distribution q(y|x̃). Typically, in a classification network, φ is the
parameters of a learned projection matrix and q(·) is the final linear layer. The expected
cross-entropy loss can be written as

xent(Y, X̃) = Ey∼Y,x̃∼X̃

[
− log q(y|x̃, φ)

]
. (A1)

Assuming that the approximate distribution q(·) is sufficiently close to p(y|x̃), minimizing
(A1) can be seen as

arg min xent(Y, X̃) ≈ arg minEy∼Y,x̃∼X̃

[
− log p(y|x̃)

]
(A2)

= arg min H(Y|X̃) = arg max I(X̃; Y), (A3)

where the last equality uses the fact that H(Y) is independent of model parameters. There-
fore, cross-entropy minimization is approximate maximization of the mutual information
between representation X̃ and labels Y.

The approximation is that we parameterized q(y|x̃; φ) as a linear projection. This
structure cannot generalize to new classes because the parameters φ are specific to the
labels y seen during training. For a model to generalize to unseen classes, one must
amortize the learning of this approximate conditional distribution. [3,31] sidestepped this
issue by using the embeddings for each class as φ.

Appendix A.2. Triplet Loss

The triplet loss [1] is defined as

Ltriplet =
∥∥∥x̃q − x̃p

∥∥∥2

2
−
∥∥∥x̃q − x̃n

∥∥∥2

2
, (A4)

where x̃q, x̃p, x̃n ∈ Rd are the embedding vectors of query, positive, and negative images.
Let yq denote the label of the query data. Recall that the pdf function of a unit Gaussian

is log N(x̃|µ, 1) = −c1 − c2
∥∥x̃− µ

∥∥2
2 , where c1, c2 are constants. Let pp(x̃) = N(x̃p, 1) and

pn(x̃) = N(x̃n, 1) be unit Gaussian distributions centered at x̃p, x̃n, respectively. We have

E
[
−Ltriplet

]
∝ E

[
log pp(x̃)− log pn(x̃)

]
(A5)

≈ E
[
log pp(x̃)− log p(x̃)

]
(A6)

= −H(X̃|Y) + H(X̃) = I(X̃; Y). (A7)

Two approximations were made in the process. We first assumed that the embedding
distribution of images not in yq is equal to the distribution of all embeddings. This is
reasonable when each class only represents a small fraction of the full data. We also
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approximated the embedding distributions p(x̃|y), p(x̃) with unit Gaussian distributions
centered at single samples from each.

Appendix A.3. N-Pair Loss

Multiclass N-pair loss [11] was proposed as an alternative to Triplet loss. This loss
function requires one positive embedding x̃+ and multiple negative embeddings x̃1, . . . ,
x̃N−1, and takes the form

− log
exp(x̃>x̃+)

exp(x̃>x̃+) + ∑N−1
i=1 exp(x̃>x̃i)

. (A8)

This can be seen as the cross-entropy loss applied to softmax(x̃>x̃+, x̃>x̃1, . . . , x̃>x̃N−1).
Following the same logic as the cross-entropy loss, this is also an approximation of

I(X̃; Y). This objective should have less variance than Triplet loss since it approximates
p(x̃) using more examples.

Appendix A.4. Adversarial Metric Learning

Deep Adversarial Metric Learning [12] tackles the problem of most negative exmples
being uninformative by directly generating meaningful negative embeddings. This model
employs a generator which takes as input the embeddings of anchor, positive, and negative
images. The generator then outputs a “synthetic negative” embedding that is hard to
distinguish from a positive embedding while being close to the negative embedding.

This can be seen as optimizing

E
[
log pp(x̃)− log p(x̃)

]
= I(X̃; Y) (A9)

by estimating p(x̃) using a generative network rather than directly from samples.
Rather than modelling the marginal distribution p(x̃), this method conditionally models
p(x̃; x̃q, x̃p, x̃n) so that x̃ is hard to distinguish from x̃p while sufficiently close to both x̃q
and x̃n.

Appendix B. Proof of Theorem 1

We restate and prove our main theorem.

Theorem A1. Let dΘ be the VC dimension of the encoder X̃(·). Let Î(X̃(XT , θ); YT) be the
empirical estimate of the mutual information using finite dataset DT , and define empirical loss as

L̂(T1:n, θ) = − 1
n

n

∑
i=1

Î(X̃(XTi , θ); YTi ). (A10)

The following inequality holds with high probability:

L(τ, θ)− L̂(T1:n, θ) ≤ O

√dΘ

n
log

n
dΘ

+ O

(
|X̃| log(m)√

m

)
+ O

(
|X̃||Y|

m

)
(A11)

Proof. We use the following lemma from [15], which we restate using our notation.

Lemma A1. Let X̃ be a random mapping of X. Let D be a sample of size m drawn from the
joint probability distribution p(X, Y). Denote the empirical mutual information observed from D
between X̃ and Y as Î(X̃; Y). For any δ ∈ (0, 1), the following holds with probability at least 1− δ:

|I(X̃; Y)− Î(X̃; Y)| ≤ (3|X̃|+ 2) log(m)
√

log(4/δ)√
2m

+
(|Y|+ 1)(|X̃|+ 1)− 4

m
(A12)
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We simplify this and plug in our specific quantities of interest (X̃(XT , θ), YT):

∣∣∣I(X̃(XT , θ); YT

)
− Î
(

X̃(XT , θ); YT

)∣∣∣ ≤ O

(
|X̃| log(m)√

m

)
+ O

(
|X̃||Y|

m

)
. (A13)

We similarly bound the error caused by estimating L with a finite number of tasks sampled
from τ. Denote the finite sample estimate of L as

L̂(τ, θ) = − 1
n

n

∑
i=1

I(X̃(XTi , θ); YTi ). (A14)

Let the mapping X 7→ X̃ be parameterized by θ ∈ Θ and let this model have VC dimension
dΘ. Using dΘ, we can state that with high probability,

∣∣∣L(τ, θ)− L̂(τ, θ)
∣∣∣ ≤ O

√dΘ

n
log

n
dΘ

, (A15)

where dΘ is the VC dimension of hypothesis class Θ.
Combining equations (A15, A13), we have with high probability∣∣∣∣∣L(τ, θ)−

(
− 1

n

n

∑
i=1

Î(X̃(XTi , θ); YTi )

)∣∣∣∣∣ (A16)

≤
∣∣∣L(τ, θ)− L̂(τ, θ)

∣∣∣+ O

(
|X̃| log(m)√

m

)
+ O

(
|X̃||Y|

m

)
(A17)

≤O

√dΘ

n
log

n
dΘ

+ O

(
|X̃| log(m)√

m

)
+ O

(
|X̃||Y|

m

)
. (A18)

Appendix C. Experiments

Appendix C.1. Parameterizing the Code Layer

Recall that each discrete code is parameterized by a Rk×d matrix. A problem with a
naive implementation of DIMCO is that simply using a linear layer that maps RD to Rk×d

takes Dkd parameters in that single layer. This can be prohibitively expensive for large
embeddings, e.g., d = 4096. We therefore, parameterize this code layer as the product of
two matrices, which sequentially map RD → Rn → Rk×d. The total number of parameters
required for this is nD + nkd. We fix all n = 128. While more complicated tricks could
reduce the parameter count even further, we found that this simple structure was sufficient
to produce the results in this paper.

Appendix C.2. Correlation of Metrics

We collected statistics from 8 different independent runs, and report the averages of
500 batches of 1-shot accuracies, Recall@1, and mutual information. I(X̃; Y) was computed
using balanced batches of 16 images each from 5 different classes. In addition to the
experiment in the paper, we measured the correlations between 1-shot accuracies, Recall@1,
and NMI using three previously proposed losses (triplet, npair, protonet). Figure A1 shows
that even for other methods for which mutual information is not the objective, mutual
information strongly correlates with all other previous metrics.
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Figure A1. Correlation between few-shot accuracy and retrieval metrics.

Appendix C.3. Code Visualizations

We provide additional visualizations of codes in Figure A2. These examples consis-
tently show that each code encodes a semantic concept, and that such concepts can be but
are not necessarily tied to a particular class.

(a) (b)

Figure A2. Cont.
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(c) (d)

Figure A2. Visualization of codes of a DIMCO model (k = 16, d = 4) trained on CIFAR100. Each of
the subfigures (a–d) correspond to one of the d = 4 dimensions. For each of the kd = 64 codewords,
we show the top 10 images from the test set that assign it the highest marginal probability in each row.

Table A1. Top-1 accuracies under various compressed embedding sizes (k, d), with best results for
each setting in bold. The original embeddings were continuous 64-dimensional embeddings, which
corresponds to k = 232, d = 64.

CIFAR-10 CIFAR-100

d = 2 d = 4 d = 8 d = 16 d = 2 d = 4 d = 8 d = 16

Product Quantization k = 2 21.88 50.38 78.68 87.24 2.84 7.77 15.24 32.47
k = 4 60.70 86.86 89.53 90.92 7.69 18.78 35.62 52.02
k = 8 90.46 90.44 90.98 91.49 15.28 31.04 50.74 58.82
k = 16 91.29 91.02 91.27 91.52 25.71 43.16 55.88 61.00

DIMCO (ours) k = 2 36.37 64.43 83.10 88.85 3.66 10.03 19.31 33.46
k = 4 62.92 88.47 90.78 91.04 11.83 25.7 37.4 53.36
k = 8 90.77 91.29 91.41 91.45 31.9 46.22 52.77 58.84
k = 16 91.49 91.68 91.46 91.57 46.17 57.83 61.11 62.49

Appendix C.4. Label-Aware Bit Compression

We computed top-1 accuracies using a kNN classifier on each type of embedding with
k = 200. We present extended results comparing PQ and DIMCO on ImageNet embeddings
in Table A2. For CIFAR-10 and CIFAR-100 pretrained ResNet20, we used pretrained weights
of open-sourced repository (https://github.com/chenyaofo/CIFAR-pretrained-models,
accessed on 15 March 2021), and for ImageNet pretrained ResNet50, we used torchvision.
We optimized the probablistic encoder with Adam optimizer [56] with learning rate of
1 × 10−2 for CIFAR-100 and ImageNet, and 3 × 10−3 for CIFAR-10.

https://github.com/chenyaofo/CIFAR-pretrained-models
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Table A2. Top-1 accuracies of compressed embeddings under various sizes (k, d) on the ImageNet
dataset. The original embeddings were continuous 2048-dimensional embeddings, which corresponds
to k = 232, d = 2048.

Product Quantization DIMCO

d = 2 d = 4 d = 8 d = 16 d = 2 d = 4 d = 8 d = 16

k = 2 0.21 0.31 1.00 5.21 0.14 0.42 1.47 5.50
k = 4 0.20 0.92 4.86 21.45 0.67 2.68 11.80 26.96
k = 8 0.82 2.57 11.91 35.43 1.71 12.82 33.28 48.11
k = 16 1.99 5.66 20.34 44.93 4.90 26.22 44.01 55.34

Appendix C.5. Small Train Set

We performed an experiment to see how well DIMCO can generalize to new datasets
after training with a small number of datasets. We trained each model using {1, 4, 16, 64}
samples from each class in the miniImageNet dataset. For example, 4 samples means
that we trained on (64 classes ×4 images) instead of the full (64 classes ×600 images). We
compare our method against three methods which use continuous embeddings for each
datapoint: Triplet Nets [1], multiclass N-pair loss [11], and ProtoNets [3].

Figure A3 shows that DIMCO learns much more effectively compared to previous
methods when the number of examples per class is low. We attribute this to DIMCO’s
tight generalization gap. Since DIMCO uses fewer bits to describe each datapoint, the
codes act as an implicit regularizer that helps generalization to unseen datasets. We
additionally note that DIMCO is the only method in Figure A3 that can train using a dataset
consisting of 1 example per class. DIMCO has this capability because, unlike other methods,
DIMCO requires no support/query (also called train/test) split and maximizes the mutual
information within a given batch. In contrast, other methods require at least one support
and one query example per class within each batch.

For this experiment, we used the Adam optimizer and performed a log-uniform
hyperparameter sweep for learning rate ∈ [1 × 10−7, 1 × 10−3] For DIMCO, we swept
p ∈ [32, 128] and d ∈ [16, 32]. For other methods, we made the embedding dimension
∈ [16, 32]. For each combination of loss and number of training examples per class, we ran
the experiment 64 times and reported the mean and standard deviation of the top 5.
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Figure A3. Performance of methods trained using subsets of miniImageNet of varying size. The
lowermost y axis value for each metric corresponds to the expected performance of random guessing.
We show the mean and standard deviation of top 5 runs from a hyperparameter sweep of 64 runs per
configuration.

Appendix C.6. Few-Shot Classification

For this experiment, we built on the code released by Lee et al. [53] (https://github.
com/kjunelee/MetaOptNet, accessed on 15 March 2021) with minimal adjustments. We
used the repository’s default datasets, augmentation, optimizer, and backbones. The only

https://github.com/kjunelee/MetaOptNet
https://github.com/kjunelee/MetaOptNet
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difference was our added module for outputting discrete codes. We show an extended
table with citations in Table A3.

Table A3. Few-shot classification accuracies on the miniImageNet benchmark, with best results for
each setting in bold. Grouped according to backbone architecture. † denotes transductive methods,
which are more expressive by taking unlabeled examples into account.

Method 5-Way 1-Shot 5-Way 5-Shot

ConvNet (64-64-64-64)
† TPN [48] 55.51 ± 0.86 69.86 ± 0.65
† FEAT [49] 55.75 ± 0.20 72.17 ± 0.16
MetaLSTM [50] 43.44 ± 0.77 60.60 ± 0.71
MatchingNet [31] 43.56 ± 0.84 55.31 ± 0.73
ProtoNet [3] 49.42 ± 0.78 68.20 ± 0.66
RelationNet [51] 50.44 ± 0.82 65.32 ± 0.70
R2D2 [52] 51.2 ± 0.6 68.8 ± 0.1
MetaOptNet-SVM [53] 52.87 ± 0.57 68.76 ± 0.48
DIMCO (64, 64) 47.33 ± 0.46 61.59 ± 0.52
DIMCO (64, 128) 53.29 ± 0.47 64.79 ± 0.57

ResNet-12
† TPN [48] 59.46 75.65
† FEAT [49] 62.60 ± 0.20 78.06 ± 0.15
SNAIL [47] 55.71 ± 0.99 68.88 ± 0.92
AdaResNet [57] 56.88 ± 0.62 71.94 ± 0.57
TADAM [4] 58.50 ± 0.30 76.70 ± 0.30
MetaOptNet-SVM [53] 62.64 ± 0.61 78.63 ± 0.46
DIMCO (128, 64) 54.57 ± 0.47 65.45 ± 0.31
DIMCO (128, 128) 57.24 ± 0.44 69.31 ± 0.38
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